- P yocto -
Yocto Project Application

Developer’s Guide

Jessica Zhang, Intel Corporation <jessica.zhang@intel.com>

by Jessica Zhang

Copyright © 2010-2014 Linux Foundation

Permission is granted to copy, distribute and/or modify this document under the terms of the Creative Commons
Attribution-Share Alike 2.0 UK: England & Wales [http://creativecommons.org/licenses/by-sa/2.0/uk/] as published
by Creative Commons.

Note

For the latest version of this manual associated with this Yocto Project release, see the Yocto Project
Application Developer's Guide [http://www.yoctoproject.org/docs/1.6.1/adt-manual/adt-manual.html]

from the Yocto Project website.

http://creativecommons.org/licenses/by-sa/2.0/uk/
http://creativecommons.org/licenses/by-sa/2.0/uk/
http://creativecommons.org/licenses/by-sa/2.0/uk/
http://www.yoctoproject.org/docs/1.6.1/adt-manual/adt-manual.html
http://www.yoctoproject.org/docs/1.6.1/adt-manual/adt-manual.html
http://www.yoctoproject.org/docs/1.6.1/adt-manual/adt-manual.html

Table of Contents

j [oY oY 1¥ ot o o H PPV 1
2. The Application Development TOOIKIt (ADT) ...cuieiiiiieiiii e 2
2.1. The Cross-Development TOOICh@INiuiiiii e 2

B) V£ £ o To | AP PP PP 2

2.3, ECliPS@ YOCLO PlUG-IN ..eiiiiiii ettt e e e e e e e e e e e aaaas 2

2.4, The QEMU EMU GO .o et et ea et e et e e iaaaaas 2

2.5, USEI-SPACE TOOIS oottt 3

3. Preparing for Application Development ..o 4
3.1. Installing the ADT and TOOIChaINSooeiiii e 4
3.1.1. Using the ADT INStallercuiniieiii e 4

3.1.2. Using a Cross-Toolchain Tarball ... 6

3.1.3. Using BitBake and the Build DireCtoryccooeiiiiiiiiiiiii e 7

3.2. Setting Up the Cross-Development ENVIronmMentcooviiiiiiiiiiiiic e 7

3.3. Securing Kernel and Filesystem IMagescoouuiiiiiiiiiiiii e 8
3.3.1. Getting the IMages ..ceeie e 8

3.3.2. Extracting the RoOt FileSyStem ..o 9

3.4. Optionally Building a Toolchain INnstaller ... 9

4. Optionally Customizing the Development Packages Installationcoooiiiiiiiin, 11
4.1. Package Management SYSEEMIS ...t 11

4.2. Configuring the PMS ... e 11

5. Using the Command LINEc.oiuiiiiiiiiiii ettt 13
5.1. AutotoOls-Based ProjeCS ..o 13
5.1.1. Creating and Running a Project Based on GNU Autotoolscoeviviiiiiiiininnnns 13

5.1.2. Passing HOSt OPLIONSeuiiiiiiii e 15

5.2. Makefile-Based PrOJECLSc.uieiiiiiii e 15

Chapter 1. Introduction

Welcome to the Yocto Project Application Developer's Guide. This manual provides information that
lets you begin developing applications using the Yocto Project.

The Yocto Project provides an application development environment based on an Application
Development Toolkit (ADT) and the availability of stand-alone cross-development toolchains and other
tools. This manual describes the ADT and how you can configure and install it, how to access and
use the cross-development toolchains, how to customize the development packages installation, how
to use command line development for both Autotools-based and Makefile-based projects, and an
introduction to the Eclipse™ IDE Yocto Plug-in.

Note

The ADT is distribution-neutral and does not require the Yocto Project reference distribution,
which is called Poky. This manual, however, uses examples that use the Poky distribution.

Chapter 2. The Application
Development Toolkit (ADT)

Part of the Yocto Project development solution is an Application Development Toolkit (ADT). The ADT
provides you with a custom-built, cross-development platform suited for developing a user-targeted
product application.

Fundamentally, the ADT consists of the following:

* An architecture-specific cross-toolchain and matching sysroot both built by the OpenEmbedded
build system. The toolchain and sysroot are based on a Metadata [http://www.yoctoproject.org/
docs/1.6.1/dev-manual/dev-manual.html#metadata] configuration and extensions, which allows
you to cross-develop on the host machine for the target hardware.

* The Eclipse IDE Yocto Plug-in.
* The Quick EMUlator (QEMU), which lets you simulate target hardware.

* Various user-space tools that greatly enhance your application development experience.

2.1. The Cross-Development Toolchain

The Cross-Development Toolchain [http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-
manual.html#cross-development-toolchain] consists of a cross-compiler, cross-linker, and cross-
debugger that are used to develop user-space applications for targeted hardware. This
toolchain is created either by running the ADT Installer script, a toolchain installer
script, or through a Build Directory [http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-
manual.html#build-directory] that is based on your Metadata configuration or extension for your
targeted device. The cross-toolchain works with a matching target sysroot.

2.2. Sysroot

The matching target sysroot contains needed headers and libraries for generating binaries that run
on the target architecture. The sysroot is based on the target root filesystem image that is built by
the OpenEmbedded build system and uses the same Metadata configuration used to build the cross-
toolchain.

2.3. Eclipse Yocto Plug-in

The Eclipse IDE is a popular development environment and it fully supports development using
the Yocto Project. When you install and configure the Eclipse Yocto Project Plug-in into the Eclipse
IDE, you maximize your Yocto Project experience. Installing and configuring the Plug-in results in
an environment that has extensions specifically designed to let you more easily develop software.
These extensions allow for cross-compilation, deployment, and execution of your output into a
QEMU emulation session. You can also perform cross-debugging and profiling. The environment also
supports a suite of tools that allows you to perform remote profiling, tracing, collection of power data,
collection of latency data, and collection of performance data.

For information about the application development workflow that uses the Eclipse IDE and for
a detailed example of how to install and configure the Eclipse Yocto Project Plug-in, see the
"Working Within Eclipse [http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#adt-
eclipse]" section of the Yocto Project Development Manual.

2.4. The QEMU Emulator

The QEMU emulator allows you to simulate your hardware while running your application or image.
QEMU is made available a number of ways:

* If you use the ADT Installer script to install ADT, you can specify whether or not to install QEMU.

http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#cross-development-toolchain
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#cross-development-toolchain
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#cross-development-toolchain
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#adt-eclipse
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#adt-eclipse
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#adt-eclipse

* If you have cloned the poky Git repository to create a Source Directory [http://www.yoctoproject.org/
docs/1.6.1/dev-manual/dev-manual.html#source-directory] and you have sourced the environment
setup script, QEMU is installed and automatically available.

* If you have downloaded a Yocto Project release and unpacked it to create a Source Directory
[http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory] and you
have sourced the environment setup script, QEMU is installed and automatically available.

* If you have installed the cross-toolchain tarball and you have sourced the toolchain's setup
environment script, QEMU is also installed and automatically available.

2.5. User-Space Tools

User-space tools are included as part of the distribution. You will find these tools helpful during
development. The tools include LatencyTOP, PowerTOP, OProfile, Perf, SystemTap, and Lttng-ust.
These tools are common development tools for the Linux platform.

* LatencyTOP: LatencyTOP focuses on latency that causes skips in audio, stutters in your desktop
experience, or situations that overload your server even when you have plenty of CPU power left.

* PowerTOP: Helps you determine what software is using the most power. You can find out more about
PowerTOP at https://01.org/powertop/.

OProfile: A system-wide profiler for Linux systems that is capable of profiling all running code
at low overhead. You can find out more about OProfile at http://oprofile.sourceforge.net/about/.
For examples on how to setup and use this tool, see the "OProfile [http://www.yoctoproject.org/
docs/1.6.1/profile-manual/profile-manual.html#profile-manual-oprofile]" section in the Yocto
Project Profiling and Tracing Manual.

 Perf: Performance counters for Linux used to keep track of certain types of hardware and software
events. For more information on these types of counters see https://perf.wiki.kernel.org/. For
examples on how to setup and use this tool, see the "perf [http://www.yoctoproject.org/docs/1.6.1/
profile-manual/profile-manual.html#profile-manual-perf]" section in the Yocto Project Profiling and
Tracing Manual.

SystemTap: A free software infrastructure that simplifies information gathering about a running
Linux system. This information helps you diagnose performance or functional problems. SystemTap
is not available as a user-space tool through the Eclipse IDE Yocto Plug-in. See http://
sourceware.org/systemtap for more information on SystemTap. For examples on how to setup and
use this tool, see the "SystemTap [http://www.yoctoproject.org/docs/1.6.1/profile-manual/profile-
manual.html#profile-manual-systemtap]" section in the Yocto Project Profiling and Tracing Manual.

Lttng-ust: A User-space Tracer designed to provide detailed information on user-space activity. See
http://Ittng.org/ust for more information on Lttng-ust.

http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
https://01.org/powertop/
http://oprofile.sourceforge.net/about/
http://www.yoctoproject.org/docs/1.6.1/profile-manual/profile-manual.html#profile-manual-oprofile
http://www.yoctoproject.org/docs/1.6.1/profile-manual/profile-manual.html#profile-manual-oprofile
http://www.yoctoproject.org/docs/1.6.1/profile-manual/profile-manual.html#profile-manual-oprofile
https://perf.wiki.kernel.org/
http://www.yoctoproject.org/docs/1.6.1/profile-manual/profile-manual.html#profile-manual-perf
http://www.yoctoproject.org/docs/1.6.1/profile-manual/profile-manual.html#profile-manual-perf
http://www.yoctoproject.org/docs/1.6.1/profile-manual/profile-manual.html#profile-manual-perf
http://sourceware.org/systemtap
http://sourceware.org/systemtap
http://www.yoctoproject.org/docs/1.6.1/profile-manual/profile-manual.html#profile-manual-systemtap
http://www.yoctoproject.org/docs/1.6.1/profile-manual/profile-manual.html#profile-manual-systemtap
http://www.yoctoproject.org/docs/1.6.1/profile-manual/profile-manual.html#profile-manual-systemtap
http://lttng.org/ust

Chapter 3. Preparing for Application
Development

In order to develop applications, you need set up your host development system. Several ways exist
that allow you to install cross-development tools, QEMU, the Eclipse Yocto Plug-in, and other tools.
This chapter describes how to prepare for application development.

3.1. Installing the ADT and Toolchains

The following list describes installation methods that set up varying degrees of tool availability on
your system. Regardless of the installation method you choose, you must source the cross-toolchain
environment setup script before you use a toolchain. See the "Setting Up the Cross-Development
Environment" section for more information.

Note

Avoid mixing installation methods when installing toolchains for different architectures. For
example, avoid using the ADT Installer to install some toolchains and then hand-installing
cross-development toolchains by running the toolchain installer for different architectures.
Mixing installation methods can result in situations where the ADT Installer becomes
unreliable and might not install the toolchain.

If you must mix installation methods, you might avoid problems by deleting /var/1lib/opkg,
thus purging the opkg package metadata

* Use the ADT installer script: This method is the recommended way to install the ADT because it
automates much of the process for you. For example, you can configure the installation to install
the QEMU emulator and the user-space NFS, specify which root filesystem profiles to download,
and define the target sysroot location.

* Use an existing toolchain: Using this method, you select and download an architecture-specific
toolchain installer and then run the script to hand-install the toolchain. If you use this method, you
just get the cross-toolchain and QEMU - you do not get any of the other mentioned benefits had
you run the ADT Installer script.

* Use the toolchain from within the Build Directory: If you already have a Build Directory [http://
www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-directory], you can build the
cross-toolchain within the directory. However, like the previous method mentioned, you only get the
cross-toolchain and QEMU - you do not get any of the other benefits without taking separate steps.

3.1.1. Using the ADT Installer

To run the ADT Installer, you need to get the ADT Installer tarball, be sure you have the necessary
host development packages that support the ADT Installer, and then run the ADT Installer Script.

For a list of the host packages needed to support ADT installation and use, see
the "ADT Installer Extras" |lists in the "Required Packages for the Host Development
System [http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#required-packages-for-
the-host-development-system]" section of the Yocto Project Reference Manual.

3.1.1.1. Getting the ADT Installer Tarball

The ADT Installer is contained in the ADT Installer tarball. You can get the tarball using either of these
methods:

* Download the Tarball: You can download the tarball from http://downloads.yoctoproject.org/
releases/yocto/yocto-1.6.1/adt-installer into any directory.

* Build the Tarball: You can use BitBake [http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-
manual.html#bitbake-term] to generate the tarball inside an existing Build Directory [http://
www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-directory].

http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#required-packages-for-the-host-development-system
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#required-packages-for-the-host-development-system
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#required-packages-for-the-host-development-system
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#required-packages-for-the-host-development-system
http://downloads.yoctoproject.org/releases/yocto/yocto-1.6.1/adt-installer
http://downloads.yoctoproject.org/releases/yocto/yocto-1.6.1/adt-installer
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#bitbake-term
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#bitbake-term
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#bitbake-term
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-directory

If you use BitBake to generate the ADT Installer tarball, you must source the environment
setup script (oe-init-build-env [http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-
manual.html#structure-core-script] or oe-init-build-env-memres [http://www.yoctoproject.org/
docs/1.6.1/ref-manual/ref-manual.html#structure-memres-core-script]) located in the Source
Directory before running the bitbake command that creates the tarball.

The following example commands establish the Source Directory [http://www.yoctoproject.org/
docs/1.6.1/dev-manual/dev-manual.html#source-directory], check out the current release branch,
set up the build environment while also creating the default Build Directory, and run the bitbake
command that results in the tarball poky/build/tmp/deploy/sdk/adt installer.tar.bz2:

Note

Before using BitBake to build the ADT tarball, be sure to make sure your local.conf file
is properly configured.

cd ~
git clone git://git.yoctoproject.org/poky
cd poky

git checkout -b daisy origin/daisy
source oe-init-build-env
bitbake adt-installer

A A A A A

3.1.1.2. Configuring and Running the ADT Installer Script

Before running the ADT Installer script, you need to unpack the tarball. You can unpack the tarball
in any directory you wish. For example, this command copies the ADT Installer tarball from where
it was built into the home directory and then unpacks the tarball into a top-level directory named
adt-installer:

$ cd ~
$ cp poky/build/tmp/deploy/sdk/adt installer.tar.bz2 $HOME
$ tar -xjf adt installer.tar.bz2

Unpacking it creates the directory adt-installer, which contains the ADT Installer script
(adt_installer) and its configuration file (adt_installer.conf).

Before you run the script, however, you should examine the ADT Installer configuration file and be
sure you are going to get what you want. Your configurations determine which kernel and filesystem
image are downloaded.

The following list describes the configurations you can define for the ADT Installer. For configuration
values and restrictions, see the comments in the adt-installer. conf file:

* YOCTOADT _REPO: This area includes the IPKG-based packages and the root filesystem upon which the
installation is based. If you want to set up your own IPKG repository pointed to by YOCTOADT_ REPO,
you need to be sure that the directory structure follows the same layout as the reference directory
set up at http://adtrepo.yoctoproject.org. Also, your repository needs to be accessible through HTTP.

* YOCTOADT TARGETS: The machine target architectures for which you want to set up cross-
development environments.

YOCTOADT QEMU: Indicates whether or not to install the emulator QEMU.

YOCTOADT NFS_UTIL: Indicates whether or not to install user-mode NFS. If you plan to use the
Eclipse IDE Yocto plug-in against QEMU, you should install NFS.

Note

To boot QEMU images using our userspace NFS server, you need to be running portmap or
rpcbind. If you are running rpcbind, you will also need to add the -i option when rpcbind
starts up. Please make sure you understand the security implications of doing this. You
might also have to modify your firewall settings to allow NFS booting to work.

http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#structure-core-script
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#structure-core-script
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#structure-core-script
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#structure-memres-core-script
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#structure-memres-core-script
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#structure-memres-core-script
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
http://adtrepo.yoctoproject.org

YOCTOADT ROOTFS <arch>: The root filesystem images you want to download from the
YOCTOADT IPKG REPO repository.

* YOCTOADT TARGET SYSROOT IMAGE <arch>: The particular root filesystem used to extract and
create the target sysroot. The value of this variable must have been specified with
YOCTOADT ROOTFS <arch>. For example, if you downloaded both minimal and sato-sdk images
by setting YOCTOADT ROOTFS <arch> to "minimal sato-sdk", then YOCTOADT ROOTFS <arch> must
be set to either "minimal” or "sato-sdk".

YOCTOADT TARGET_SYSROOT LOC <arch>: The location on the development host where the target
sysroot is created.

After you have configured the adt installer.conf file, run the installer using the following
command:

$ cd adt-installer
$./adt _installer

Once the installer begins to run, you are asked to enter the location for cross-toolchain installation.
The default location is /opt/poky/<release>. After either accepting the default location or selecting
your own location, you are prompted to run the installation script interactively or in silent mode. If
you want to closely monitor the installation, choose “I” for interactive mode rather than “S” for silent
mode. Follow the prompts from the script to complete the installation.

Once the installation completes, the ADT, which includes the cross-toolchain, is installed
in the selected installation directory. You will notice environment setup files for the cross-
toolchain in the installation directory, and image tarballs in the adt-installer directory
according to your installer configurations, and the target sysroot located according to the
YOCTOADT TARGET SYSROOT LOC <arch> variable also in your configuration file.

3.1.2. Using a Cross-Toolchain Tarball

If you want to simply install a cross-toolchain by hand, you can do so by running the toolchain installer.
The installer includes the pre-built cross-toolchain, the rungemu script, and support files. If you use
this method to install the cross-toolchain, you might still need to install the target sysroot by installing
and extracting it separately. For information on how to install the sysroot, see the "Extracting the
Root Filesystem" section.

Follow these steps:
1. Get your toolchain installer using one of the following methods:

* Go to http://downloads.yoctoproject.org/releases/yocto/yocto-1.6.1/toolchain/ and find the folder
that matches your host development system (i.e. 1686 for 32-bit machines or x86 64 for 64-
bit machines).

Go into that folder and download the toolchain installer whose name includes the appropriate
target architecture. The toolchains provided by the Yocto Project are based off of the core-image-
sato image and contain libraries appropriate for developing against that image. For example,

if your host development system is a 64-bit x86 system and you are going to use your cross-
toolchain for a 32-bit x86 target, go into the x86 64 folder and download the following installer:

poky-eglibc-x86 64-core-image-sato-i586-toolchain-1.6.1.sh

* Build your own toolchain installer. For cases where you cannot use an installer from the download
area, you can build your own as described in the "Optionally Building a Toolchain Installer" section.

2. 0nce you have the installer, run it to install the toolchain:

Note

You must change the permissions on the toolchain installer script so that it is executable.

http://downloads.yoctoproject.org/releases/yocto/yocto-1.6.1/toolchain/

The following command shows how to run the installer given a toolchain tarball for a 64-bit x86
development host system and a 32-bit x86 target architecture. The example assumes the toolchain
installer is located in ~/Downloads/.

$ ~/Downloads/poky-eglibc-x86 64-core-image-sato-i586-toolchain-1.6.1.sh

The first thing the installer prompts you for is the directory into which you want to install the
toolchain. The default directory used is /opt/poky/1.6.1. If you do not have write permissions
for the directory into which you are installing the toolchain, the toolchain installer notifies you and
exits. Be sure you have write permissions in the directory and run the installer again.

When the script finishes, the cross-toolchain is installed. You will notice environment setup files for
the cross-toolchain in the installation directory.

3.1.3. Using BitBake and the Build Directory

A final way of making the cross-toolchain available is to use BitBake to generate the
toolchain within an existing Build Directory [http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-
manual.html#build-directory]. This method does not install the toolchain into the default /opt
directory. As with the previous method, if you need to install the target sysroot, you must do that
separately as well.

Follow these steps to generate the toolchain into the Build Directory:

1. Set up the Build Environment: Source the OpenEmbedded build environment setup script (i.e. oe-
init-build-env [http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#structure-
core-script] or oe-init-build-env-memres [http://www.yoctoproject.org/docs/1.6.1/ref-manual/
ref-manual.html#structure-memres-core-script]) located in the Source Directory [http://
www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory].

2. Check your Local Configuration File: At this point, you should be sure that the MACHINE
[http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-MACHINE] variable in the
local.conf file found in the conf directory of the Build Directory is set for the target architecture.
Comments within the local. conf file list the values you can use for the MACHINE variable.

Note

You can populate the Build Directory with the cross-toolchains for more than a single
architecture. You just need to edit the MACHINE variable in the local. conf file and re-run
the bitbake command.

3. Generate the Cross-Toolchain: Run bitbake meta-ide-support to complete the cross-toolchain
generation. Once the bitbake command finishes, the cross-toolchain is generated and populated
within the Build Directory. You will notice environment setup files for the cross-toolchain that contain
the string "environment-setup" in the Build Directory's tmp folder.

Be aware that when you use this method to install the toolchain, you still need to separately extract
and install the sysroot filesystem. For information on how to do this, see the "Extracting the Root
Filesystem" section.

3.2. Setting Up the Cross-Development
Environment

Before you can develop using the cross-toolchain, you need to set up the cross-development
environment by sourcing the toolchain's environment setup script. If you used the ADT Installer or
hand-installed cross-toolchain, then you can find this script in the directory you chose for installation.
For this release, the default installation directory is /opt/poky/1.6.1. If you installed the toolchain
in the Build Directory [http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-
directory], you can find the environment setup script for the toolchain in the Build Directory's tmp
directory.

Be sure to run the environment setup script that matches the architecture for which you are
developing. Environment setup scripts begin with the string "environment-setup" and include as

http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#structure-core-script
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#structure-core-script
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#structure-core-script
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#structure-core-script
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#structure-memres-core-script
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#structure-memres-core-script
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#structure-memres-core-script
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-MACHINE
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-MACHINE
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-directory

part of their name the architecture. For example, the toolchain environment setup script for a 64-bit
IA-based architecture installed in the default installation directory would be the following:

/opt/poky/1.6.1/environment-setup-x86 64-poky-1linux

3.3. Securing Kernel and Filesystem Images

You will need to have a kernel and filesystem image to boot using your hardware or the QEMU
emulator. Furthermore, if you plan on booting your image using NFS or you want to use the root
filesystem as the target sysroot, you need to extract the root filesystem.

3.3.1. Getting the Images

To get the kernel and filesystem images, you either have to build them or download pre-built versions.
You can find examples for both these situations in the "A Quick Test Run [http://www.yoctoproject.org/
docs/1.6.1/yocto-project-gs/yocto-project-gs.html#test-run]" section of the Yocto Project Quick Start.

The Yocto Project ships basic kernel and filesystem images for several architectures (x86, x86-64,
mips, powerpc, and arm) that you can use unaltered in the QEMU emulator. These kernel images reside
in the release area - http://downloads.yoctoproject.org/releases/yocto/yocto-1.6.1/machines and are
ideal for experimentation using Yocto Project. For information on the image types you can build
using the OpenEmbedded build system, see the "Images [http://www.yoctoproject.org/docs/1.6.1/ref-
manual/ref-manual.html#ref-images]" chapter in the Yocto Project Reference Manual.

If you are planning on developing against yourimage and you are not building or using one of the Yocto
Project development images (e.g. core-image-*-dev), you must be sure to include the development
packages as part of your image recipe.

Furthermore, if you plan on remotely deploying and debugging your application from within the
Eclipse IDE, you must have an image that contains the Yocto Target Communication Framework
(TCF) agent (tcf-agent). By default, the Yocto Project provides only one type of pre-built image that
contains the tcf-agent. And, those images are SDK (e.g.core-image-sato-sdk).

If you want to use a different image type that contains the tcf-agent, you can do so one of two ways:

* Modify the conf/local.conf configuration in the Build Directory [http://www.yoctoproject.org/
docs/1.6.1/dev-manual/dev-manual.html#build-directory] and then rebuild the image. With this
method, you need to modify the EXTRA IMAGE FEATURES [http://www.yoctoproject.org/docs/1.6.1/
ref-manual/ref-manual.html#var-EXTRA_IMAGE_FEATURES] variable to have the value of "tools-
debug" before rebuilding the image. Once the image is rebuilt, the tcf-agent will be included in
the image and is launched automatically after the boot.

Manually build the tcf-agent. To build the agent, follow these steps:
1. Be sure the ADT is installed as described in the "Installing the ADT and Toolchains" section.

2.Set up the cross-development environment as described in the "Setting Up the Cross-
Development Environment" section.

3. Get the tcf-agent source code using the following commands:

$ git clone http://git.eclipse.org/gitroot/tcf/org.eclipse.tcf.agent.git
$ cd org.eclipse.tcf.agent/agent

4. Locate the Makefile.inc file inside the agent folder and modify it for the cross-compilation
environment by setting the OPSYS and MACHINE [http://www.yoctoproject.org/docs/1.6.1/ref-
manual/ref-manual.html#var-MACHINE] variables according to your target.

5. Use the cross-development tools to build the tcf-agent. Before you "Make" the file, be sure your
cross-tools are set up first. See the "Makefile-Based Projects" section for information on how to
make sure the cross-tools are set up correctly.

http://www.yoctoproject.org/docs/1.6.1/yocto-project-qs/yocto-project-qs.html#test-run
http://www.yoctoproject.org/docs/1.6.1/yocto-project-qs/yocto-project-qs.html#test-run
http://www.yoctoproject.org/docs/1.6.1/yocto-project-qs/yocto-project-qs.html#test-run
http://downloads.yoctoproject.org/releases/yocto/yocto-1.6.1/machines
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#ref-images
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#ref-images
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#ref-images
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-EXTRA_IMAGE_FEATURES
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-EXTRA_IMAGE_FEATURES
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-EXTRA_IMAGE_FEATURES
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-MACHINE
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-MACHINE
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-MACHINE

If the build is successful, the tcf-agent output will be obj/$(0PSYS) /$ (MACHINE) /Debug/agent.

6. Deploy the agent into the image's root filesystem.

3.3.2. Extracting the Root Filesystem

If you install your toolchain by hand or build it using BitBake and you need a root filesystem, you
need to extract it separately. If you use the ADT Installer to install the ADT, the root filesystem is
automatically extracted and installed.

Here are some cases where you need to extract the root filesystem:
* You want to boot the image using NFS.

* You want to use the root filesystem as the target sysroot. For example, the Eclipse IDE environment
with the Eclipse Yocto Plug-in installed allows you to use QEMU to boot under NFS.

* You want to develop your target application using the root filesystem as the target sysroot.

To extract the root filesystem, first source the cross-development environment setup script. If you
built the toolchain in the Build Directory, you will find the toolchain environment script in the tmp
directory. If you installed the toolchain by hand, the environment setup script is located in /opt/
poky/1.6.1.

After sourcing the environment script, use the rungemu-extract-sdk command and provide the
filesystem image.

Following is an example. The second command sets up the environment. In this case, the setup script
is located in the /opt/poky/1.6.1 directory. The third command extracts the root filesystem from a
previously built filesystem that is located in the ~/Downloads directory. Furthermore, this command
extracts the root filesystem into the gemux86-sato directory:

$ cd ~

$ source /opt/poky/1l.6.1/environment-setup-1i586-poky-1linux

$ rungemu-extract-sdk \
~/Downloads/core-image-sato-sdk-gemux86-2011091411831.rootfs.tar.bz2 \
$HOME/gemux86-sato

You could now point to the target sysroot at gemux86-sato.

3.4. Optionally Building a Toolchain Installer

As an alternative to locating and downloading a toolchain installer, you can build the toolchain installer
one of two ways if you have a Build Directory [http://www.yoctoproject.org/docs/1.6.1/dev-manual/
dev-manual.html#build-directory]:

* Use bitbake meta-toolchain. This method requires you to still install the target sysroot by
installing and extracting it separately. For information on how to install the sysroot, see the
"Extracting the Root Filesystem" section.

* Usebitbake <image> -c populate_ sdk. This method has significant advantages over the previous
method because it results in a toolchain installer that contains the sysroot that matches your target
root filesystem.

Another powerful feature is that the toolchain is completely self-contained. The binaries are linked
against their own copy of libc, which results in no dependencies on the target system. To achieve
this, the pointer to the dynamic loader is configured at install time since that path cannot be
dynamically altered. This is the reason for a wrapper around the populate sdk archive.

Another feature is that only one set of cross-canadian toolchain binaries are produced per
architecture. This feature takes advantage of the fact that the target hardware can be passed to
gcc as a set of compiler options. Those options are set up by the environment script and contained

http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-directory

in variables like CC and LD. This reduces the space needed for the tools. Understand, however, that
a sysroot is still needed for every target since those binaries are target-specific.

Remember, before using any BitBake command, you must source the build environment
setup script (i.e. oe-init-build-env [http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-
manual.html#structure-core-script] or oe-init-build-env-memres [http://www.yoctoproject.org/
docs/1.6.1/ref-manual/ref-manual.html#structure-memres-core-script]) located in the Source
Directory and you must make sure your conf/local.conf variables are correct. In
particular, you need to be sure the MACHINE [http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-
manual.html#var-MACHINE] variable matches the architecture for which you are building and that the
SDKMACHINE [http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-SDKMACHINE]
variable is correctly set if you are building a toolchain designed to run on an architecture that differs
from your current development host machine (i.e. the build machine).

When the bitbake command completes, the toolchain installer will be in tmp/deploy/sdk in the Build
Directory.

Note

By default, this toolchain does not build static binaries. If you want to use the toolchain to
build these types of libraries, you need to be sure your image has the appropriate static
development libraries. Use the IMAGE INSTALL [http://www.yoctoproject.org/docs/1.6.1/ref-
manual/ref-manual.html#var-IMAGE_INSTALL] variable inside your local. conf file to install
the appropriate library packages. Following is an example using eglibc static development
libraries:

IMAGE INSTALL append = " eglibc-staticdev"

http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#structure-core-script
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#structure-core-script
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#structure-core-script
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#structure-memres-core-script
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#structure-memres-core-script
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#structure-memres-core-script
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-MACHINE
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-MACHINE
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-MACHINE
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-SDKMACHINE
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-SDKMACHINE
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-IMAGE_INSTALL
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-IMAGE_INSTALL
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-IMAGE_INSTALL

Chapter 4. Optionally Customizing
the Development Packages
Installation

Because the Yocto Project is suited for embedded Linux development, it is likely that you will need
to customize your development packages installation. For example, if you are developing a minimal
image, then you might not need certain packages (e.g. graphics support packages). Thus, you would
like to be able to remove those packages from your target sysroot.

4.1. Package Management Systems

The OpenEmbedded build system supports the generation of sysroot files using three different
Package Management Systems (PMS):

* OPKG: A less well known PMS whose use originated in the OpenEmbedded and OpenWrt embedded
Linux projects. This PMS works with files packaged in an .ipk format. See http://en.wikipedia.org/
wiki/Opkg for more information about OPKG.

* RPM: A more widely known PMS intended for GNU/Linux distributions. This PMS works with files
packaged in an . rms format. The build system currently installs through this PMS by default. See
http://en.wikipedia.org/wiki/RPM_Package_Manager for more information about RPM.

» Debian: The PMS for Debian-based systems is built on many PMS tools. The lower-level PMS tool
dpkg forms the base of the Debian PMS. For information on dpkg see http://en.wikipedia.org/wiki/
Dpkg.

4.2. Configuring the PMS

Whichever PMS you are using, you need to be sure that the PACKAGE CLASSES [http://
www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-PACKAGE_CLASSES] variable in
the conf/local.conf file is set to reflect that system. The first value you choose for the variable
specifies the package file format for the root filesystem at sysroot. Additional values specify additional
formats for convenience or testing. See the configuration file for details.

Note

For build performance information related to the PMS, see the "package.bbclass [http://
www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#ref-classes-package]" section
in the Yocto Project Reference Manual.

As an example, consider a scenario where you are using OPKG and you want to add the libglade
package to the target sysroot.

First, you should generate the IPK file for the libglade package and add it into a working opkg
repository. Use these commands:

$ bitbake libglade
$ bitbake package-index

Next, source the environment setup script found in the Source Directory [http://www.yoctoproject.org/
docs/1.6.1/dev-manual/dev-manual.html#source-directory]. Follow that by setting up the installation
destination to point to your sysroot as <sysroot dir>. Finally, have an OPKG configuration file
<conf_file> that corresponds to the opkg repository you have just created. The following command
forms should now work:

$ opkg-cl —f <conf file> -0 <sysroot dir> update
$ opkg-cl —f <cconf file> -0 <sysroot dir> \

http://en.wikipedia.org/wiki/Opkg
http://en.wikipedia.org/wiki/Opkg
http://en.wikipedia.org/wiki/RPM_Package_Manager
http://en.wikipedia.org/wiki/Dpkg
http://en.wikipedia.org/wiki/Dpkg
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-PACKAGE_CLASSES
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-PACKAGE_CLASSES
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-PACKAGE_CLASSES
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#ref-classes-package
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#ref-classes-package
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#ref-classes-package
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory

--force-overwrite install libglade

$ opkg-cl —f <cconf file> -0 <sysroot dir> \
--force-overwrite install libglade-dbg

$ opkg-cl —f <conf file> -0 <sysroot dir> \
--force-overwrite install libglade-dev

Chapter 5. Using the Command
Line

Recall that earlier the manual discussed how to use an existing toolchain tarball that
had been installed into the default installation directory, /opt/poky/1.6.1, which is outside
of the Build Directory [http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-
directory] (see the section "Using a Cross-Toolchain Tarball)". And, that sourcing your architecture-
specific environment setup script initializes a suitable cross-toolchain development environment.

During this setup, locations for the compiler, QEMU scripts, QEMU binary, a special version of
pkgconfig and other useful utilities are added to the PATH variable. Also, variables to assist
pkgconfig and autotools are also defined so that, for example, configure.sh can find pre-
generated test results for tests that need target hardware on which to run.

Collectively, these conditions allow you to easily use the toolchain outside of the OpenEmbedded build

environment on both Autotools-based projects and Makefile-based projects. This chapter provides
information for both these types of projects.

5.1. Autotools-Based Projects

Once you have a suitable cross-toolchain installed, it is very easy to develop a project outside of the
OpenEmbedded build system. This section presents a simple "Helloworld" example that shows how
to set up, compile, and run the project.

5.1.1. Creating and Running a Project Based on GNU
Autotools

Follow these steps to create a simple Autotools-based project:

1. Create your directory: Create a clean directory for your project and then make that directory your
working location:

$ mkdir $HOME/helloworld
$ cd $HOME/helloworld

2. Populate the directory: Create hello.c, Makefile.am, and configure.in files as follows:

¢ For hello.c, include these lines:

#include <stdio.h>

main()

{
}

printf("Hello World!\n");

e For Makefile.am, include these lines:

bin PROGRAMS = hello
hello SOURCES = hello.c

* For configure.in, include these lines:

AC_INIT(hello.c)

http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-directory

AM_INIT AUTOMAKE (hello,0.1)
AC_PROG_CC

AC_PROG_INSTALL

AC_OUTPUT (Makefile)

. Source the cross-toolchain environment setup file: Installation of the cross-toolchain creates a
cross-toolchain environment setup script in the directory that the ADT was installed. Before you
can use the tools to develop your project, you must source this setup script. The script begins
with the string "environment-setup" and contains the machine architecture, which is followed by
the string "poky-linux". Here is an example that sources a script from the default ADT installation
directory that uses the 32-bit Intel x86 Architecture and using the daisy Yocto Project release:

$ source /opt/poky/1l.6.1/environment-setup-1i586-poky-linux

. Generate the local aclocal.m4 files and create the configure script: The following GNU Autotools
generate the local aclocal.m4 files and create the configure script:

$ aclocal
$ autoconf

. Generate files needed by GNU coding standards: GNU coding standards require certain files in
order for the project to be compliant. This command creates those files:

$ touch NEWS README AUTHORS ChangelLog

. Generate the configure file: This command generates the configure:
$ automake -a

. Cross-compile the project: This command compiles the project using the cross-compiler:
$./configure ${CONFIGURE_FLAGS}

. Make and install the project: These two commands generate and install the project into the
destination directory:

$ make
$ make install DESTDIR=./tmp

. Verify the installation: This command is a simple way to verify the installation of your project.
Running the command prints the architecture on which the binary file can run. This architecture
should be the same architecture that the installed cross-toolchain supports.

$ file ./tmp/usr/local/bin/hello

10Execute your project: To execute the project in the shell, simply enter the name. You could also

copy the binary to the actual target hardware and run the project there as well:

$./hello

As expected, the project displays the "Hello World!" message.

5.1.2. Passing Host Options

For an Autotools-based project, you can use the cross-toolchain by just passing the appropriate host
option to configure.sh. The host option you use is derived from the name of the environment setup
script found in the directory in which you installed the cross-toolchain. For example, the host option for
an ARM-based target that uses the GNU EABI is armv5te-poky-linux-gnueabi. You will notice that
the name of the script is environment-setup-armv5te-poky-linux-gnueabi. Thus, the following
command works:

$./configure --host=armv5te-poky-linux-gnueabi \
--with-libtool-sysroot=<sysroot-dir>

This single command updates your project and rebuilds it using the appropriate cross-toolchain tools.

Note

If the configure script results in problems recognizing the --with-libtool-
sysroot=<sysroot-dir> option, regenerate the script to enable the support by doing the
following and then run the script again:

$ libtoolize --automake

$ aclocal -I ${OECORE_NATIVE SYSROOT}/usr/share/aclocal \
[-I <dir_containing_your project-specific_m4 macros>]

$ autoconf

$ autoheader

$

automake -a

5.2. Makefile-Based Projects

For a Makefile-based project, you use the cross-toolchain by making sure the tools are used. You can
do this as follows:

CC=arm-poky-linux-gnueabi-gcc
LD=arm-poky-1linux-gnueabi-1d

CFLAGS="${CFLAGS} --sysroot=<sysroot-dir>"
CXXFLAGS="${CXXFLAGS} --sysroot=<sysroot-dir>"

	Yocto Project Application Developer's Guide
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. The Application Development Toolkit (ADT)
	2.1. The Cross-Development Toolchain
	2.2. Sysroot
	2.3. Eclipse Yocto Plug-in
	2.4. The QEMU Emulator
	2.5. User-Space Tools

	Chapter 3. Preparing for Application Development
	3.1. Installing the ADT and Toolchains
	3.1.1. Using the ADT Installer
	3.1.1.1. Getting the ADT Installer Tarball
	3.1.1.2. Configuring and Running the ADT Installer Script

	3.1.2. Using a Cross-Toolchain Tarball
	3.1.3. Using BitBake and the Build Directory

	3.2. Setting Up the Cross-Development Environment
	3.3. Securing Kernel and Filesystem Images
	3.3.1. Getting the Images
	3.3.2. Extracting the Root Filesystem

	3.4. Optionally Building a Toolchain Installer

	Chapter 4. Optionally Customizing the Development Packages Installation
	4.1. Package Management Systems
	4.2. Configuring the PMS

	Chapter 5. Using the Command Line
	5.1. Autotools-Based Projects
	5.1.1. Creating and Running a Project Based on GNU Autotools
	5.1.2. Passing Host Options

	5.2. Makefile-Based Projects

