3/4/2020 Yocto Project Reference Manual

Scott Rifenbark

Scotty's Documentation Services, INC

Copyright © 2010-2020 Linux Foundation

<srifenbark@gmail.com>

Permission is granted to copy, distribute and/or modify this document under the terms of the Creative Commons Attribution-

Share Alike 2.0 UK: England & Wales as published by Creative Commons.

Manual Notes

e This version of the Yocto Project Reference Manual is for the 3.1 release of the Yocto

Project. To be sure you have the latest version of the manual for this release, go to the Yocto
Project documentation page and select the manual from that site. Manuals from the site are

more up-to-date than manuals derived from the Yocto Project released TAR files.

e If you located this manual through a web search, the version of the manual might not be the

one you want (e.g. the search might have returned a manual much older than the Yocto

Project version with which you are working). You can see all Yocto Project major releases by

visiting the Releases page. If you need a version of this manual for a different Yocto Project
release, visit the Yocto Project documentation page and select the manual set by using the
"ACTIVE RELEASES DOCUMENTATION" or "DOCUMENTS ARCHIVE" pull-down menus.

e To report any inaccuracies or problems with this manual, send an email to the Yocto Project
discussion group at yocto@yoctoproject.com or log into the freenode
#yocto channel.

’ Revision History

’ Revision 4.0+git ’ November 2010

’The initial document released with the Yocto Project 0.9 Release

|Revision 1.0 | April 2011

’Released with the Yocto Project 1.0 Release.

| Revision 1.1 |October 2011

’Released with the Yocto Project 1.1 Release.

| Revision 1.2 | April 2012

’Released with the Yocto Project 1.2 Release.

[Revision 1.3 [October 2012

’Released with the Yocto Project 1.3 Release.

|Revision 1.4 | April 2013

’Released with the Yocto Project 1.4 Release.

| Revision 1.5 |October 2013

’Released with the Yocto Project 1.5 Release.

|Revision 1.6 | April 2014

’Released with the Yocto Project 1.6 Release.

|Revision 1.7 |October 2014

’Released with the Yocto Project 1.7 Release.

| Revision 1.8 | April 2015

[
https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

1/235

mailto:srifenbark@gmail.com
http://creativecommons.org/licenses/by-sa/2.0/uk/
http://www.yoctoproject.org/documentation
https://wiki.yoctoproject.org/wiki/Releases
http://www.yoctoproject.org/documentation

3/4/2020 Yocto Project Reference Manual

|Re|eased with the Yocto Project 1.8 Release.

| Revision 2.0 |October 2015

’Released with the Yocto Project 2.0 Release.

| Revision 2.1 | April 2016

’Released with the Yocto Project 2.1 Release.

|Revision 2.2 |October 2016

’Released with the Yocto Project 2.2 Release.

| Revision 2.3 |May 2017

’Released with the Yocto Project 2.3 Release.

| Revision 2.4 |October 2017

’Released with the Yocto Project 2.4 Release.

[Revision 2.5 [May 2018

’Released with the Yocto Project 2.5 Release.

| Revision 2.6 |November 2018

’Released with the Yocto Project 2.6 Release.

| Revision 2.7 |May 2019

’Released with the Yocto Project 2.7 Release.

| Revision 3.0 |October 2019

’Released with the Yocto Project 3.0 Release.

|Revision 3.1 | April 2020

’Released with the Yocto Project 3.1 Release.

Table of Contents

1. System Requirements
1.1. Supported Linux Distributions
1.2. Required Packages for the Build Host
1.2.1. Ubuntu and Debian
1.2.2. Fedora Packages
1.2.3. openSUSE Packages
1.2.4. CentOS Packages

1.3. Required Git,_tar, and Python Versions
1.3.1. Downloading_a Pre-Built bui ldt ool s Tarball
1.3.2. Building_Your Own buildtools Tarball

2. Yocto Project Terms
3. Yocto Project Releases and the Stable Release Process
3.1. Major and Minor Release Cadence
3.2. Major Release Codenames
3.3. Stable Release Process
3.4. Testing_and Quality Assurance

4. Migrating_to a Newer Yocto Project Release
4.1. General Migration Considerations
4.2. Moving_to the Yocto Project 1.3 Release
4.2.1. Local Configuration
4.2.2. Recipes
4.2.3. Linux Kernel Naming

4.3. Moving_to the Yocto Project 1.4 Release

4.3.1. BitBake

4.3.2. Build Behavior
4.3.3. Proxies and Fetching Source
4.3.4. Custom Interfaces File (netbase change)
4.3.5. Remote Debugging
4.3.6
4.3.7
4.3.8

.3.6. Variables
. Target Package Management with RPM
.3.8. Recipes Moved
4.3.9. Removals and Renames

4.4. Moving_to the Yocto Project 1.5 Release
4.4.1. Host Dependency_Changes
4.4.2. atom—pc Board Support Package (BSP)
4.4.3. BitBake
4.4.4. QA Warnings
4.4.5. Directory Layout Changes
4.4.6. Shortened Git SRCREV Values

4.4.7. IMAGE FEATURES
4.4.8. /run

4.4.9. Removal of Package Manager Database Within Image Recipes
4.4.10. Images Now Rebuild Only on Changes Instead of Every Time
4.4.11. Task Recipes

4.4.12. BusyBox

4.4.13. Automated Image Testing

4.4.14. Build History

4.4.15. udev

4.4.16. Removed and Renamed Recipes

4.4.17. Other Changes

4.5. Moving_to the Yocto Project 1.6 Release

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 2/235

3/4/2020

4.5.1.

Yocto Project Reference Manual

archiver Class

4.5.2.

Packaging_Changes

.5.3. BitBake

. Changes to Variables

. Package Test (ptest)

Build Changes

gemu-native

core-image-basic

Licensing

. CFLAGS Options

. Custom Image Output Types

.5.12. Tasks

.update-alternative Provider

.virtclass Overrides

. Removed and Renamed Recipes
. Removed Classes

. Reference Board Support Packages (BSPs)

4.6. Moving

to the Yocto Project 1.7 Release

4.6.1.

4.6.2.

Changes to Setting QEMU PACKAGECONFTIG Optionsin 1ocal.conf
Minimum Git version

4.6.3.

Autotools Class Changes

4.6.4.

Binary Configuration Scripts Disabled

4.6.5.

eglibc 2.19 Replacedwith glibc 2.20

4.6.6.

Kernel Module Autoloading

4.6.7.

QA Check Changes

4.6.8.

Removed Recipes

4.6.9.

Miscellaneous Changes

4.7. Moving

to the Yocto Project 1.8 Release

4.7.1.

Removed Recipes

4.7.2.

BlueZ 4.x / 5.x Selection

4.7.3.

Kernel Build Changes

4.7.4.

SSL 3.0 is Now Disabled in OpenSSL

4.7.5.

Default Sysroot Poisoning

4.7.6.

Rebuild Improvements

4.7.7.

QA Check and Validation Changes

4.7.8.

Miscellaneous Changes

4.8. Moving

to the Yocto Project 2.0 Release

GCC5

4.8.1.
4.8.2.

Gstreamer 0.10 Removed

4.8.3.

Removed Recipes

4.8.4.

BitBake datastore improvements

4.8.5.

Shell Message Function Changes

4.8.6.

Extra Development/Debug_Package Cleanup

4.8.7.

Recipe Maintenance Tracking_Data Moved to OE-Core

4.8.8.

Automatic Stale Sysroot File Cleanup

4.8.9.

linux-yocto Kernel Metadata Repository Now Split from Source

4.8.10

. Additional QA checks

4.8.11

. Miscellaneous Changes

4.9. Moving

to the Yocto Project 2.1 Release

4.9.1.

Variable Expansion in Python Functions

4.9.2.

Overrides Must Now be Lower-Case

4.9.3.

Expand Parameter to getVar ()_and getVarFlag ()_is Now Mandatory

4.9.4.

Makefile Environment Changes

4.9.5.

libexecdir Revertedto $ {prefix}/libexec

4.9.6.

ac cv_sizeof off tisNolonger Cached in Site Files

4.9.7.

Image Generation is Now Split Qut from Filesystem Generation

4.9.8.

Removed Recipes

4.9.9.

Class Changes

4.9.10.

Build System User Interface Changes

4.9.11.

ADT Removed

4.9.12.

Poky_Reference Distribution Changes

4.9.13.

Packaging_Changes

4.9.14.

Tuning_File Changes

4.9.15.

Supporting_GObject Introspection

4.9.16.

4.10. Movin

Miscellaneous Changes
g_to the Yocto Project 2.2 Release

.10.1

. Minimum Kernel Version

10.2

. Staging_Directories in Sysroot Has Been Simplified

10.3

. Removal of Old Images and Other Files in tmp/deploy Now Enabled

10.4

. Python Changes

10.5

. uClibc Replaced by musl

10.6

. S {B}_No Longer Default Working_Directory for Tasks

10.7

. rungemu Ported to Python

10.8
10.9

. . Default Linker Hash Style Changed
. KERNEL TIMAGE BASE NAME no Longer Uses KERNETL TMAGETYPE
10.10. BitBake Changes

10.1

. 1. Swabber has Been Removed

10.12. Removed Recipes

10.13. Removed Classes

10.14. Minor Packaging_Changes

BB S B

10.1

5. Miscellaneous Changes

4.11. Movin

g_to the Yocto Project 2.3 Release

4.11.1

. Recipe-specific Sysroots

. PATH Variable

4.11.2
4.11.3

. Changes to Scripts

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

3/235

3/4/2020 Yocto Project Reference Manual

11.4. Changes to Functions
.11.5. BitBake Changes
11.6. Absolute Symbolic Links
.11.7. GPLv2 Versions of GPLv3 Recipes Moved
11.8. Package Management Changes
11.9. Removed Recipes
.11.10. Wic Changes
11.11. QA Changes
.11.12. Miscellaneous Changes

B B 1

4.12. Moving_to the Yocto Project 2.4 Release
4.12.1. Memory Resident Mode
4.12.2. Packaging_Changes
4.12.3. Removed Recipes
4.12.4. Kernel Device Tree Move
4.12.5. Package QA Changes
4.12.6. README File Changes

4.12.7. Miscellaneous Changes

4.13. Moving_to the Yocto Project 2.5 Release
.13.1. Packaging_Changes
.2. Removed Recipes

13.2

13.3. Scripts and Tools Changes
.13.4. BitBake Changes
13.5
13.6

. Python and Python 3 Changes
. Miscellaneous Changes

4.14. Moving_to the Yocto Project 2.6 Release
4.14.1. GCC 8.2 is Now Used by Default
4.14.2. Removed Recipes
4.14.3. Packaging_Changes
4.14.4. XOrg_Protocol dependencies

4.14.5.distutils anddistutils3 Now Prevent Fetching Dependencies During_the

do_configure Task

.14.6. 1 inux—yocto Configuration Audit Issues Now Correctly Reported

.14.7. Image/Kernel Artifact Naming_Changes
14.8. SERTAT,_CONSOLE Deprecated

14.9. Configure Script Reports Unknown Options as Errors
14.10. Override Changes

14.11. sy stemd Configuration is Now Split Into Systemd-conf

.12. Automatic Testing_Changes
14.13. OpenSSL Changes
14.14. BitBake Changes
14.15. Security Changes
.14.16. Post Installation Changes
14.17. Python 3 Profile-Guided Optimization
.14.18. Miscellaneous Changes

BB BB BB
=
N
=
N

4.15. Moving_to the Yocto Project 2.7 Release
15.1. BitBake Changes
.15.2. Eclipse™ Support Removed

15.6. License Value Corrections
15.7. Packaging_Changes
15.8. Removed Recipes
.15.9. Removed Classes
15.10. Miscellaneous Changes

BB S S

4.16. Moving_to the Yocto Project 3.0 Release
16.1. Init System Selection

16.2. LSB Support Removed

16.3. Removed Recipes

16.4. Packaging_Changes

16.5. CVE Checking

16.6. Bitbake Changes

16.7. Sanity Checks

16.8. Miscellaneous Changes

Rl e el ol il il el

5. Source Directory Structure
5.1. Top-Level Core Components

5.1.1. bitbake/

5.1.2. build/

5.1.3. documentation/
5.1.4.meta/

5.1.5. meta-poky/

5.1.6. meta-yocto-bsp/
5.1.7.meta-selftest/
5.1.8. meta-skeleton/

5.1.9. scripts/

5.1.10. ce—init-build-env

5.1.11. LICENSE, README, and README.hardware

.15.3. gemu-native Splits the System and User-Mode Parts
.15.4. The upstream-tracking. inc File Has Been Removed
.15.5. The DISTRO _FEATURES LIBC Variable Has Been Removed

5.2. The Build Directory - build
5.2.1. build/buildhistory
5.2.2.build/conf/local.conf
5.23.build/conf/bblayers.conf
52.4.build/conf/sanity info

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

4/235

3/4/2020

5.3.

Yocto Project Reference Manual

5.2.5.build/downloads

5.2.6. build/sstate-cache
52.7.build/tmp/
5.2.8.build/tmp/buildstats
5.2.9.build/tmp/cache/

5.2.10. build/tmp/deploy/

5.2.11. build/tmp/deploy/deb
5.2.12. build/tmp/deploy/rpm/
5.2.13. build/tmp/deploy/ipk/
5.2.14. build/tmp/deploy/licenses

5.2.15. build/tmp/deploy/images
5.2.16. build/tmp/deploy/sdk
5.2.17. build/tmp/sstate-control

5.2.18. build/tmp/sysroots-components/

5.2.19.build/tmp/sysroots/
5.2.20. build/tmp/stamps/
5.2.21.build/tmp/log/
5.2.22. build/tmp/work

5.2.23. build/tmp/work/tunearch/recipename/version/

5.2.24. build/tmp/work-shared

The Metadata - meta

5.3.1.meta/classes/
5.3.2.meta/conf/
5.3.3.meta/conf/machine/
5.3.4.meta/conf/distro
5.3.5.meta/conf/machine-sdk
5.36.meta/files
5.3.7.meta/lib

5.3.8. meta/recipes-bsp/
5.3.9.meta/recipes-connectivity/
5.3.10. meta/recipes-core/
5.3.11.meta/recipes-devtools
5.3.12. meta/recipes—-extended
5.3.13. meta/recipes—-gnome
5.3.14.meta/recipes—-graphics
5.3.15. meta/recipes—-kernel/
5.3.16. meta/recipes—-1sb4d/
5.3.17.meta/recipes—-multimedia/
5.3.18. meta/recipes—-rt/
5.3.19. meta/recipes-sato
5.3.20.meta/recipes-support
5.3.21.meta/site
5.3.22.meta/recipes.txt

6. Classes

6.1.

allarch.bbclass

6.2.

archiver.bbclass

6.3.

autotools*.bbclass

6.4.

base.bbclass

bash-completion.bbclass

6.5.

bin package.bbclass

6.6.

binconfig.bbclass

6.7.
6.8.

binconfig-disabled.bbclass

6.9.

blacklist.bbclass

6.10.

buildhistory.bbclass

6.11.

buildstats.bbclass

6.12.

buildstats-summary.bbclass

.ccache.bbclass
.chrpath.bbclass
.clutter.bbclass

6.13
6.14
6.15

6.16.

cmake.bbclass

6.17.

cmll.bbclass

6.18.

compress doc.bbclass

6.19.

copyleft compliance.bbclass

6.20.

copyleft filter.bbclass

.core—-image.bbclass
6.22. cpan*.bbclass

6.21

6.23

.cross.bbclass

6.24

.cross—-canadian.bbclass

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

5/235

3/4/2020

6.25.

Yocto Project Reference Manual

crosssdk.bbclass

6.26.

debian.bbclass

6.27.

deploy.bbclass

6.28.

devshell.bbclass

.devupstream.bbclass

6.29

.distro features check.bbclass

6.30

_distutils*.bbclass
.distutils3*.bbclass

6.31
6.32

6.33.

externalsrc.bbclass

6.34.

extrausers.bbclass

6.35.

fontcache.bbclass

6.36.

fs-uuid.bbclass

6.37. gconf .bbclass
6.38. gettext .bbclass
6.39. gnomebase .bbclass

6.40

.gobject-introspection.bbclass

6.41

.grub-efi.bbclass

6.42

.gsettings.bbclass

6.43

.gtk-doc.bbclass

6.44. gtk—icon-cache.bbclass

6.45. gtk—-immodules-cache.bbclass

6.46. gzipnative.bbclass

6.47.

icecc.bbclass

6.48

.image.bbclass

6.49.

image-buildinfo.bbclass

6.50.

image types.bbclass

.image-live.bbclass

6.51

.image-mklibs.bbclass

6.52

.image-prelink.bbclass

6.53
6.54

.insane.bbclass

6.55.

insserv.bbclass

6.56.

kernel .bbclass

6.57.

kernel-arch.bbclass

6.58.

kernel-devicetree.bbclass

.kernel-fitimage.bbclass

6.59

.kernel-grub.bbclass

6.60
6.61

.kernel-module-split.bbclass
6.62.

kernel-uboot.bbclass

6.63.

kernel-uimage.bbclass

6.64.

kernel-yocto.bbclass

6.65.

kernelsrc.bbclass

.1ib package.bbclass
.libc*.bbclass

6.66
6.67
6.68

.license.bbclass

6.69

.linux-kernel-base.bbclass

6.70.

linuxloader.bbclass

6.71.

logging.bbclass

6.72.

meta.bbclass

6.73.

metadata scm.bbclass

6.74.

migrate localcount.bbclass

.mime.bbclass

6.75
6.76

.mirrors.bbclass

6.77.

module.bbclass

6.78.

module-base.bbclass

6.79.

multilib*.bbclass

6.80.

native.bbclass

.nativesdk.bbclass
6.82.

6.81

nopackages.bbclass

6.83. npm.bbclass

6.84

.oelint.bbclass

6.85

.own-mirrors.bbclass

6.86

.package.bbclass

6.87

.package deb.bbclass

6.88. package ipk.bbclass
6.89. package rpm.bbclass
6.90. package tar.bbclass
6.91. packagedata.bbclass

6.92

. packagegroup.bbclass

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

6/235

3/4/2020

Yocto Project Reference Manual

6.93. patch.bbclass
6.94. perlnative.bbclass

6.95. pixbufcache.bbclass

6.96. pkgconfig.bbclass

6.97. populate sdk.bbclass
6.98. populate sdk *.bbclass
6.99. prexport.bbclass

6.100. primport.bbclass

6.101.

prserv.bbclass

6.102.

ptest.bbclass

6.103.

ptest-gnome.bbclass

6.104.

python-dir.bbclass

6.105. python3native.bbclass
6.106. pythonnative.bbclass
6.107. gemu.bbclass

6.108.

recipe sanity.bbclass

6.109.

relocatable.bbclass

6.110.

remove-libtool.bbclass

6.111.

report-error.bbclass

6.112

.rm _work.bbclass

6.113.

6.114

rootfs*.bbclass

.sanity.bbclass

6.115.

scons.bbclass

6.116.

sdl.bbclass

6.117.

setuptools.bbclass

6.118.

setuptools3.bbclass

6.119.

sign_rpm.bbclass

6.120.

6.121

sip.bbclass

.siteconfig.bbclass

6.122

.siteinfo.bbclass

6.123.

spdx.bbclass

6.124.

sstate.bbclass

6.125.

staging.bbclass

6.126.

syslinux.bbclass

6.127. systemd.bbclass

6.128.

6.129

systemd-boot.bbclass

.terminal .bbclass

6.130.

testimage*.bbclass

6.131.

testsdk.bbclass

6.132.

texinfo.bbclass

6.133.

tinderclient.bbclass

6.134

.toaster.bbclass

6.135

.toolchain-scripts.bbclass

6.136

. typecheck.bbclass

6.137

.uboot-config.bbclass

6.138.

uninative.bbclass

6.139.

update-alternatives.bbclass

6.140.

update-rc.d.bbclass

6.141.

useradd*.bbclass

6.142

.utility—-tasks.bbclass
.utils.bbclass

6.143
6.144

.vala.bbclass

6.145.

waf.bbclass

7. Tasks

7.1. Normal Recipe Build Tasks
7z.1.1.do _build

7.1.2.do_compile
7z1.3.do _compile ptest base

7.1.4.do_configure

71.5.do_configure ptest base

72.1.6.do _deploy
7.1.7.do_fetch

7.1.8.do_image
7.1.9.do_image complete

7.1.10.do_install
z.1.11.do _install ptest base

7.1.12. do_package

7.1.13. do_package dga

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

7/235

3/4/2020

1.14.do_package write deb
1.15. do_package write ipk
.1.16. do_package write rpm
1.17.do_package write tar
.1.18. do_packagedata

.1.19. do_patch
.1.20.do_populate lic
.1.21.do_populate sdk

.1.22. do_populate sysroot

Yocto Project Reference Manual

1.23.do_prepare recipe sysroot

.1.24.do_rm work

.1.25. do_unpack

7.2. Manually Called Tasks
7.2.1. do_checkpkg
7.2.2.do_checkuri
7.2.3.do_clean
7.2.4.do_cleanall
72.5.do_cleansstate
7.2.6. do_devpyshell
7.2.7.do_devshell
7.2.8.do listtasks
7.2.9.do_package index

NN N NN NN N NN NN

7.3. Image-Related Tasks
7.3.1. do_bootimg

7.3.2.do_bundle initramfs
7.3.3.do_rootfs
7.3.4.do_testimage
72.3.5.do_testimage auto

7.4. Kernel-Related Tasks

7.4.1. do_compile kernelmodules

74.2.do _diffconfig
7.4.3.do_kernel checkout

7.4.4.do_kernel configcheck

7.4.5.do_kernel configme
7.4.6.do_kernel menuconfig
7.4.7.do_kernel metadata
7.4.8.do_menuconfig
7.4.9.do_savedefconfig
7.4.10.do_shared workdir
7.4.11. do_sizecheck
7.4.12.do_strip

7.4.13.do _validate branches

7.5. Miscellaneous Tasks
7.5.1.do_spdx

8. devt ool Quick Reference

8.1. Getting Help
8.2. The Workspace Layer Structure

8.3. Adding_a New Recipe to the Workspace Layer

8.4. Extracting_the Source for an Existing_Recipe

8.5. Synchronizing_a Recipe's Extracted Source Tree

8.6. Modifying_an Existing_Recipe
8.7. Edit an Existing_Recipe
8.8. Updating_a Recipe
8.9. Checking_on the Upgrade Status of a Recipe
8.10. Upgrading_a Recipe
11. Resetting_a Recipe
. Building_Your Recipe
. Building_Your Image

. Removing_Your Software from the Target Machine

8.

8.12

8.13

8.14. Deploying_Your Software on the Target Machine
8.15

8.1

6. Creating_the Workspace Layer in an Alternative Location

8.17. Get the Status of the Recipes in Your Workspace

8.18. Search for Available Target Recipes
9. OpenEmbedded Kickstart (. Wk S) Reference

9.1. Introduction
9.2. Command: part or partition
9.3. Command: bootloader

10. QA Error and Warning_Messages

10.1. Introduction
10.2. Errors and Warnings

11. Images
12. Features

12.1. Machine Features
12.2. Distro Features

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

8/235

Yocto Project Reference Manual

12.3. Image Features
12.4. Feature Backfilling

13. Variables Glossary.
Glossary

14. Variable Context
14.1. Configuration
14.1.1. Distribution (Distro),
14.1.2. Machine
14.1.3. Local

14.2. Recipes
14.2.1. Required
14.2.2. Dependencies
14.2.3. Paths
14.2.4. Extra Build Information

15. FAQ
16. Contributions and Additional Information
16.1. Introduction
16.2. Contributions
16.3. Yocto Project Bugzilla
16.4. Mailing_lists
16.5. Internet Relay Chat (IRC)
16.6. Links and Related Documentation

Chapter 1. System Requirementsf|

Table of Contents

1.1. Supported Linux Distributions
1.2. Required Packages for the Build Host
1.2.1. Ubuntu and Debian
1.2.2. Fedora Packages
1.2.3. openSUSE Packages
1.2.4. CentOS Packages

1.3. Required Git, tar,_and Python Versions
1.3.1. Downloading_a Pre-Built buildt ool s Tarball

1.3.2. Building_Your Own buildtools Tarball

Welcome to the Yocto Project Reference Manual! This manual provides reference information for the current release of the
Yocto Project. The manual is best used after you have an understanding of the basics of the Yocto Project. The manual is
neither meant to be read as a starting point to the Yocto Project nor read from start to finish. Use this manual to find
variable definitions, class descriptions, and so forth as needed during the course of using the Yocto Project.

For introductory information on the Yocto Project, see the Yocto Project Website and the "Yocto Project Development

Environment" chapter in the Yocto Project Overview and Concepts Manual.

If you want to use the Yocto Project to quickly build an image without having to understand concepts, work through the
Yocto Project Quick Build document. You can find "how-to" information in the Yocto Project Development Tasks Manual. You

can find Yocto Project overview and conceptual information in the Yocto Project Overview and Concepts Manual.

Tip

For more information about the Yocto Project Documentation set, see the "Links and Related

Documentation" section.

1.1. Supported Linux Distributionsq|

Currently, the Yocto Project is supported on the following distributions:

Notes

e Yocto Project releases are tested against the stable Linux distributions in the following list. The
Yocto Project should work on other distributions but validation is not performed against them.

e In particular, the Yocto Project does not support and currently has no plans to support rolling-
releases or development distributions due to their constantly changing nature. We welcome
patches and bug reports, but keep in mind that our priority is on the supported platforms

listed below.

e The Yocto Project is not compatible with the Windows Subsystem for Linux (WSL). You cannot

use a build host that is running WSL.

e If you encounter problems, please go to Yocto Project Bugzilla and submit a bug. We are
interested in hearing about your experience. For information on how to submit a bug, see the

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

9/235

http://www.yoctoproject.org/
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#overview-development-environment
http://www.yoctoproject.org/docs/3.1/brief-yoctoprojectqs/brief-yoctoprojectqs.html
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html
https://en.wikipedia.org/wiki/Windows_Subsystem_for_Linux
http://bugzilla.yoctoproject.org/

3/4/2020 Yocto Project Reference Manual

Yocto Project Bugzilla wiki page and the "Submitting_a Defect Against the Yocto Project"”
section in the Yocto Project Development Tasks Manual.

e Ubuntu 16.04 (LTS)

e Ubuntu 18.04 (LTS)

e Ubuntu 19.04

e Fedora 28

e Fedora 29

e Fedora 30

e CentOS 7.x

e Debian GNU/Linux 8.x (Jessie)

e Debian GNU/Linux 9.x (Stretch)
e Debian GNU/Linux 10.x (Buster)

e OpenSUSE Leap 15.1

Note

While the Yocto Project Team attempts to ensure all Yocto Project releases are one hundred percent
compatible with each officially supported Linux distribution, instances might exist where you
encounter a problem while using the Yocto Project on a specific distribution.

1.2. Required Packages for the Build Hostf|

The list of packages you need on the host development system can be large when covering all build scenarios using the
Yocto Project. This section provides required packages according to Linux distribution and function.

1.2.1. Ubuntu and Debian{

The following list shows the required packages by function given a supported Ubuntu or Debian Linux distribution:

Note

If your build system has the 0 s s4—devV package installed, you might experience QEMU build
failures due to the package installing its own custom
/usr/include/linux/soundcard.h on the Debian system. If you run into this
situation, either of the following solutions exist:

$ sudo apt-get build-dep gemu
$ sudo apt-get remove oss4-dev

e Essentials: Packages needed to build an image on a headless system:
$ sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib \
build-essential chrpath socat cpio python python3 python3-pip python3-pexpect \

xz-utils debianutils iputils-ping python3-git python3-jinja2 libegll-mesa libsdll.2-dev \
pylint3 xterm

e Documentation: Packages needed if you are going to build out the Yocto Project documentation manuals:

$ sudo apt-get install make xsltproc docbook-utils fop dblatex xmlto

1.2.2. Fedora Packages]

The following list shows the required packages by function given a supported Fedora Linux distribution:
e Essentials: Packages needed to build an image for a headless system:

$ sudo dnf install gawk make wget tar bzip2 gzip python3 unzip perl patch \
diffutils diffstat git cpp gcc gcc-c++ glibc-devel texinfo chrpath \

ccache perl-Data-Dumper perl-Text-ParseWords perl-Thread-Queue perl-bignum socat \
python3-pexpect findutils which file cpio python python3-pip xz python3-GitPython \
python3-jinja2 SDL-devel xterm

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 10/235

https://wiki.yoctoproject.org/wiki/Bugzilla_Configuration_and_Bug_Tracking
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#submitting-a-defect-against-the-yocto-project

3/4/2020 Yocto Project Reference Manual
o Documentation: Packages needed if you are going to build out the Yocto Project documentation manuals:

$ sudo dnf install docbook-style-dsssl docbook-style-xsl \
docbook-dtds docbook-utils fop libxslt dblatex xmlto

1.2.3. openSUSE Packages(
The following list shows the required packages by function given a supported openSUSE Linux distribution:
e Essentials: Packages needed to build an image for a headless system:

$ sudo zypper install python gcc gcc-c++ git chrpath make wget python-xml \

diffstat makeinfo python-curses patch socat python3 python3-curses tar python3-pip \

python3-pexpect xz which python3-Jinja2 Mesa-1ibEGL1
$ sudo pip3 install GitPython 1ibSDL-devel xterm

e Documentation: Packages needed if you are going to build out the Yocto Project documentation manuals:

$ sudo zypper install dblatex xmlto

1.2.4. CentOS Packages(
The following list shows the required packages by function given a supported CentOS Linux distribution:
e Essentials: Packages needed to build an image for a headless system:
$ sudo yum install -y epel-release
$ sudo yum makecache
$ sudo yum install gawk make wget tar bzip2 gzip python unzip perl patch \
diffutils diffstat git cpp gcc gcc-c++ glibc-devel texinfo chrpath socat \
perl-Data-Dumper perl-Text-ParseWords perl-Thread-Queue python34-pip xz \

which SDL-devel xterm
$ sudo pip3 install GitPython jinja2

Notes

o Extra Packages for Enterprise Linux (i.e. epel—release) is a collection of packages
from Fedora built on RHEL/CentOS for easy installation of packages not included in
enterprise Linux by default. You need to install these packages separately.

o The makecache command consumes additional Metadata from epel-release.

e Documentation: Packages needed if you are going to build out the Yocto Project documentation manuals:

$ sudo yum install docbook-style-dsssl docbook-style-xsl \
docbook-dtds docbook-utils fop libxslt dblatex xmlto

1.3. Required Git, tar, and Python Versions{|

In order to use the build system, your host development system must meet the following version requirements for Git, tar,
and Python:

e Git 1.8.3.1 or greater
e tar 1.27 or greater
e Python 3.4.0 or greater

If your host development system does not meet all these requirements, you can resolve this by installing a
buildtools tarball that contains these tools. You can get the tarball one of two ways: download a pre-built tarball or
use BitBake to build the tarball.

1.3.1. Downloading a Pre-Built buildtools Tarballf

Downloading and running a pre-built buildtools installer is the easiest of the two methods by which you can get these tools:

1. Locate and download the * . Sh at http://downloads.yoctoproject.org/releases/yocto/yocto-3.1/buildtools/.

2. Execute the installation script. Here is an example:

$ sh ~/Downloads/x86_64-buildtools-nativesdk-standalone-3.1.sh

During execution, a prompt appears that allows you to choose the installation directory. For example, you could
choose the following:

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 11/235

http://downloads.yoctoproject.org/releases/yocto/yocto-3.1/buildtools/

3/4/2020 Yocto Project Reference Manual

/home/your-username/buildtools

3. Source the tools environment setup script by using a command like the following:

$ source /home/your_username/buildtools/environment-setup-i586-poky-linux

Of course, you need to supply your installation directory and be sure to use the right file (i.e. i585 or x86-64).

After you have sourced the setup script, the tools are added to PATH and any other environment variables required
to run the tools are initialized. The results are working versions versions of Git, tar, Python and chrpath.

1.3.2. Building Your Own buildtools Tarballf

Building and running your own buildtools installer applies only when you have a build host that can already run BitBake. In
this case, you use that machine to build the . sh file and then take steps to transfer and run it on a machine that does not
meet the minimal Git, tar, and Python requirements.

Here are the steps to take to build and run your own buildtools installer:

1. On the machine that is able to run BitBake, be sure you have set up your build environment with the setup script
(ce—init-build-env).

2. Run the BitBake command to build the tarball:

$ bitbake buildtools-tarball

Note

The SDKMACHTINE variable in your Local .conf file determines whether you build
tools for a 32-bit or 64-bit system.

Once the build completes, you can find the . Sh file that installs the tools in the tmp/deploy/sdk
subdirectory of the Build Directory. The installer file has the string "buildtools" in the name.

3. Transfer the . sh file from the build host to the machine that does not meet the Git, tar, or Python requirements.
4. On the machine that does not meet the requirements, run the . Sh file to install the tools. Here is an example:
$ sh ~/Downloads/x86_64-buildtools-nativesdk-standalone-3.1.sh
During execution, a prompt appears that allows you to choose the installation directory. For example, you could
choose the following:

/home/your_username/buildtools

5. Source the tools environment setup script by using a command like the following:

$ source /home/your_username/buildtools/environment-setup-i586-poky-linux

Of course, you need to supply your installation directory and be sure to use the right file (i.e. i585 or x86-64).

After you have sourced the setup script, the tools are added to PATH and any other environment variables required
to run the tools are initialized. The results are working versions versions of Git, tar, Python and chrpath.

Chapter 2. Yocto Project Termsf|

Following is a list of terms and definitions users new to the Yocto Project development environment might find helpful. While
some of these terms are universal, the list includes them just in case:

e Append Files: Files that append build information to a recipe file. Append files are known as BitBake append files and
.bbappend files. The OpenEmbedded build system expects every append file to have a corresponding recipe (. bb)
file. Furthermore, the append file and corresponding recipe file must use the same root filename. The filenames can differ
only in the file type suffix used (e.g. formfactor 0.0.bband formfactor 0.0.bbappend).

Information in append files extends or overrides the information in the similarly-named recipe file. For an example of an
append file in use, see the "Using_.bbappend Files in Your Layer" section in the Yocto Project Development Tasks Manual.

o n

When you name an append file, you can use the "%" wildcard character to allow for matching recipe names. For example,
suppose you have an append file named as follows:

busybox_1.21.%.bbappend

That append file would match any busybox 1.21.x.bDb version of the recipe. So, the append file would match
the following recipe names:

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

12/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#using-bbappend-files

3/4/2020

Yocto Project Reference Manual

busybox_1.21.1.bb
busybox_1.21.2.bb
busybox_1.21.3.bb

Important
The use of the "%" character is limited in that it only works directly in front of the

.bbappend portion of the append file's name. You cannot use the wildcard character in any
other location of the name.

BitBake: The task executor and scheduler used by the OpenEmbedded build system to build images. For more
information on BitBake, see the BitBake User Manual.

Board Support Package (BSP): A group of drivers, definitions, and other components that provide support for a
specific hardware configuration. For more information on BSPs, see the Yocto Project Board Support Package (BSP)
Developer's Guide.

Build Directory: This term refers to the area used by the OpenEmbedded build system for builds. The area is created
when you Source the setup environment script that is found in the Source Directory (i.e. ce—init-build-
env). The TOPDIR variable points to the Build Directory.

You have a lot of flexibility when creating the Build Directory. Following are some examples that show how to create the
directory. The examples assume your Source Directory is named poky:

o Create the Build Directory inside your Source Directory and let the name of the Build Directory default to build:

$ cd $HOME/poky
$ source oe-init-build-env

o Create the Build Directory inside your home directory and specifically name it test-builds:

$ cd $HOME
$ source poky/oe-init-build-env test-builds

o Provide a directory path and specifically name the Build Directory. Any intermediate folders in the pathname must
exist. This next example creates a Build Directory named YP—=23. 0. 0 in your home directory within the existing
directory mybui lds:

$cd $HOME
$ source $HOME/poky/oe-init-build-env $HOME/mybuilds/YP-23.0.0

Note

By default, the Build Directory contains TMPD TR, which is a temporary directory the build
system uses for its work. TMPD IR cannot be under NFS. Thus, by default, the Build Directory
cannot be under NFS. However, if you need the Build Directory to be under NFS, you can set
this up by setting TMPDIR in your 1ocal . conf file to use a local drive. Doing so
effectively separates TMPDIR from TOPDIR, which is the Build Directory.

Build Host: The system used to build images in a Yocto Project Development environment. The build system is
sometimes referred to as the development host.

Classes: Files that provide for logic encapsulation and inheritance so that commonly used patterns can be defined once
and then easily used in multiple recipes. For reference information on the Yocto Project classes, see the "Classes" chapter.
Class files end with the . bbclass filename extension.

Configuration File: Files that hold global definitions of variables, user-defined variables, and hardware configuration
information. These files tell the OpenEmbedded build system what to build and what to put into the image to support a
particular platform.

Configuration files end with a . conf filename extension. The conf/local . conf configuration file in the Build
Directory contains user-defined variables that affect every build. The meta-—
poky/conf/distro/poky.conf configuration file defines Yocto "distro" configuration variables used only
when building with this policy. Machine configuration files, which are located throughout the Source Directory, define
variables for specific hardware and are only used when building for that target (e.g. the
machine/beaglebone.conf configuration file defines variables for the Texas Instruments ARM Cortex-A8
development board).

Container Layer: Layers that hold other layers. An example of a container layer is OpenEmbedded's meta—
openembedded layer. The meta-openembedded layer contains many meta—>* layers.

Cross-Development Toolchain: In general, a cross-development toolchain is a collection of software development tools
and utilities that run on one architecture and allow you to develop software for a different, or targeted, architecture.
These toolchains contain cross-compilers, linkers, and debuggers that are specific to the target architecture.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

13/235

http://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html
http://www.yoctoproject.org/docs/3.1/bsp-guide/bsp-guide.html
https://github.com/openembedded/meta-openembedded

3/4/2020 Yocto Project Reference Manual
The Yocto Project supports two different cross-development toolchains:
o A toolchain only used by and within BitBake when building an image for a target architecture.

o A relocatable toolchain used outside of BitBake by developers when developing applications that will run on a targeted
device.

Creation of these toolchains is simple and automated. For information on toolchain concepts as they apply to the Yocto
Project, see the "Cross-Development Toolchain Generation" section in the Yocto Project Overview and Concepts Manual.
You can also find more information on using the relocatable toolchain in the Yocto Project Application Development and
the Extensible Software Development Kit (eSDK) manual.

o Extensible Software Development Kit (eSDK): A custom SDK for application developers. This eSDK allows developers
to incorporate their library and programming changes back into the image to make their code available to other
application developers.

(eSDK) manual.

e Image: An image is an artifact of the BitBake build process given a collection of recipes and related Metadata. Images
are the binary output that run on specific hardware or QEMU and are used for specific use-cases. For a list of the
supported image types that the Yocto Project provides, see the "Images" chapter.

e Layer: A collection of related recipes. Layers allow you to consolidate related metadata to customize your build. Layers
also isolate information used when building for multiple architectures. Layers are hierarchical in their ability to override
previous specifications. You can include any number of available layers from the Yocto Project and customize the build by
adding your layers after them. You can search the Layer Index for layers used within Yocto Project.

For introductory information on layers, see the "The Yocto Project Layer Model" section in the Yocto Project Overview and
Concepts Manual. For more detailed information on layers, see the "Understanding_and Creating_Layers" section in the
Yocto Project Development Tasks Manual. For a discussion specifically on BSP Layers, see the "BSP Layers" section in the
Yocto Project Board Support Packages (BSP) Developer's Guide.

e Metadata: A key element of the Yocto Project is the Metadata that is used to construct a Linux distribution and is
contained in the files that the OpenEmbedded build system parses when building an image. In general, Metadata includes
recipes, configuration files, and other information that refers to the build instructions themselves, as well as the data
used to control what things get built and the effects of the build. Metadata also includes commands and data used to
indicate what versions of software are used, from where they are obtained, and changes or additions to the software itself
(patches or auxiliary files) that are used to fix bugs or customize the software for use in a particular situation.
OpenEmbedded-Core is an important set of validated metadata.

In the context of the kernel ("kernel Metadata"), the term refers to the kernel config fragments and features contained in
the yocto—kernel —cache Git repository.

e OpenEmbedded-Core (OE-Core): OE-Core is metadata comprised of foundational recipes, classes, and associated files
that are meant to be common among many different OpenEmbedded-derived systems, including the Yocto Project. OE-
Core is a curated subset of an original repository developed by the OpenEmbedded community that has been pared down
into a smaller, core set of continuously validated recipes. The result is a tightly controlled and an quality-assured core set
of recipes.

You can see the Metadata in the meta directory of the Yocto Project Source Repositories.

o OpenEmbedded Build System: The build system specific to the Yocto Project. The OpenEmbedded build system is
based on another project known as "Poky", which uses BitBake as the task executor. Throughout the Yocto Project
documentation set, the OpenEmbedded build system is sometimes referred to simply as "the build system". If other build
systems, such as a host or target build system are referenced, the documentation clearly states the difference.

Note

For some historical information about Poky, see the Poky term.

e Package: In the context of the Yocto Project, this term refers to a recipe's packaged output produced by BitBake (i.e. a
"baked recipe"). A package is generally the compiled binaries produced from the recipe's sources. You "bake" something
by running it through BitBake.

It is worth noting that the term "package" can, in general, have subtle meanings. For example, the packages referred to
in the "Required Packages for the Build Host" section are compiled binaries that, when installed, add functionality to your
Linux distribution.

Another point worth noting is that historically within the Yocto Project, recipes were referred to as packages - thus, the
existence of several BitBake variables that are seemingly mis-named, (e.g. PR, PV, and PE).

e Package Groups: Arbitrary groups of software Recipes. You use package groups to hold recipes that, when built, usually
accomplish a single task. For example, a package group could contain the recipes for a company’s proprietary or value-
add software. Or, the package group could contain the recipes that enable graphics. A package group is really just
another recipe. Because package group files are recipes, they end with the .ol filename extension.

e Poky: Poky, which is pronounced Pock-ee, is a reference embedded distribution and a reference test configuration. Poky
provides the following:

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 14/235

http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#cross-development-toolchain-generation
http://www.yoctoproject.org/docs/3.1/sdk-manual/sdk-manual.html
http://www.yoctoproject.org/docs/3.1/sdk-manual/sdk-manual.html
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#the-yocto-project-layer-model
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#understanding-and-creating-layers
http://www.yoctoproject.org/docs/3.1/bsp-guide/bsp-guide.html#bsp-layers
http://git.yoctoproject.org/cgit/cgit.cgi/yocto-kernel-cache
http://git.yoctoproject.org/cgit/cgit.cgi

3/4/2020 Yocto Project Reference Manual

o A base-level functional distro used to illustrate how to customize a distribution.
o A means by which to test the Yocto Project components (i.e. Poky is used to validate the Yocto Project).
o A vehicle through which you can download the Yocto Project.

Poky is not a product level distro. Rather, it is a good starting point for customization.

Note

Poky began an open-source project initially developed by OpenedHand. OpenedHand developed
Poky from the existing OpenEmbedded build system to create a commercially supportable build
system for embedded Linux. After Intel Corporation acquired OpenedHand, the poky project
became the basis for the Yocto Project's build system.

e Recipe: A set of instructions for building packages. A recipe describes where you get source code, which patches to
apply, how to configure the source, how to compile it and so on. Recipes also describe dependencies for libraries or for
other recipes. Recipes represent the logical unit of execution, the software to build, the images to build, and use the . bb
file extension.

e Reference Kit: A working example of a system, which includes a BSP as well as a build host and other components, that
can work on specific hardware.

e Source Directory: This term refers to the directory structure created as a result of creating a local copy of the PO ky
Git repository git://git.yoctoproject.org/poky or expanding a released poky tarball.

Note

Creating a local copy of the POk Yy Git repository is the recommended method for setting up
your Source Directory.

Sometimes you might hear the term "poky directory" used to refer to this directory structure.

Note

The OpenEmbedded build system does not support file or directory names that contain spaces.
Be sure that the Source Directory you use does not contain these types of names.

The Source Directory contains BitBake, Documentation, Metadata and other files that all support the Yocto Project.
Consequently, you must have the Source Directory in place on your development system in order to do any development
using the Yocto Project.

When you create a local copy of the Git repository, you can name the repository anything you like. Throughout much of
the documentation, "poky" is used as the name of the top-level folder of the local copy of the poky Git repository. So, for
example, cloning the poky Git repository results in a local Git repository whose top-level folder is also named "poky".

While it is not recommended that you use tarball expansion to set up the Source Directory, if you do, the top-level
directory name of the Source Directory is derived from the Yocto Project release tarball. For example, downloading and
unpacking poky-dunfell-23.0.0.tar.bz2 results in a Source Directory whose root folder is named
poky-dunfell-23.0.0.

It is important to understand the differences between the Source Directory created by unpacking a released tarball as
compared to cloning git://git.yoctoproject.org/poky. When you unpack a tarball, you have an
exact copy of the files based on the time of release - a fixed release point. Any changes you make to your local files in the
Source Directory are on top of the release and will remain local only. On the other hand, when you clone the poky Git
repository, you have an active development repository with access to the upstream repository's branches and tags. In this
case, any local changes you make to the local Source Directory can be later applied to active development branches of
the upstream pPoOky Git repository.

For more information on concepts related to Git repositories, branches, and tags, see the "Repositories, Tags, and
Branches" section in the Yocto Project Overview and Concepts Manual.

e Task: A unit of execution for BitBake (e.g. do_compile, do fetch, do patch, and so forth).

e Toaster: A web interface to the Yocto Project's OpenEmbedded Build System. The interface enables you to configure and
run your builds. Information about builds is collected and stored in a database. For information on Toaster, see the
Toaster User Manual.

e Upstream: A reference to source code or repositories that are not local to the development system but located in a
master area that is controlled by the maintainer of the source code. For example, in order for a developer to work on a
particular piece of code, they need to first get a copy of it from an "upstream" source.

Chapter 3. Yocto Project Releases and the Stable Release Processf|

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 15/235

http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#repositories-tags-and-branches
http://www.yoctoproject.org/docs/3.1/toaster-manual/toaster-manual.html

3/4/2020

Yocto Project Reference Manual

Table of Contents

3.1. Major and Minor Release Cadence
3.2. Major Release Codenames

3.3. Stable Release Process

3.4. Testing_and Quality Assurance

The Yocto Project release process is predictable and consists of both major and minor (point) releases. This brief chapter
provides information on how releases are named, their life cycle, and their stability.

3.1. Major and Minor Release Cadencef

The Yocto Project delivers major releases (e.g. 3.1) using a six month cadence roughly timed each April and October of the
year. Following are examples of some major YP releases with their codenames also shown. See the "Major Release
Codenames" section for information on codenames used with major releases.

2.2 (Morty)
2.1 (Krogoth)
2.0 (Jethro)

While the cadence is never perfect, this timescale facilitates regular releases that have strong QA cycles while not
overwhelming users with too many new releases. The cadence is predictable and avoids many major holidays in various
geographies.

The Yocto project delivers minor (point) releases on an unscheduled basis and are usually driven by the accumulation of
enough significant fixes or enhancements to the associated major release. Following are some example past point releases:

NN
N R R
BN R

The point release indicates a point in the major release branch where a full QA cycle and release process validates the
content of the new branch.

Note

Realize that there can be patches merged onto the stable release branches as and when they
become available.

3.2. Major Release Codenamesf|

Each major release receives a codename that identifies the release in the Yocto Project Source Repositories. The concept is
that branches of Metadata with the same codename are likely to be compatible and thus work together.

Note

Codenames are associated with major releases because a Yocto Project release number (e.g. 3.1)
could conflict with a given layer or company versioning scheme. Codenames are unique,
interesting, and easily identifiable.

Releases are given a nominal release version as well but the codename is used in repositories for this reason. You can find
information on Yocto Project releases and codenames at https://wiki.yoctoproject.org/wiki/Releases.

3.3. Stable Release Processf

Once released, the release enters the stable release process at which time a person is assigned as the maintainer for that
stable release. This maintainer monitors activity for the release by investigating and handling nominated patches and
backport activity. Only fixes and enhancements that have first been applied on the "master" branch (i.e. the current, in-
development branch) are considered for backporting to a stable release.

Note

The current Yocto Project policy regarding backporting is to consider bug fixes and security fixes
only. Policy dictates that features are not backported to a stable release. This policy means generic
recipe version upgrades are unlikely to be accepted for backporting. The exception to this policy
occurs when a strong reason exists such as the fix happens to also be the preferred upstream
approach.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 16/235

http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#yocto-project-repositories
https://wiki.yoctoproject.org/wiki/Releases

3/4/2020 Yocto Project Reference Manual

Stable release branches have strong maintenance for about a year after their initial release. Should significant issues be
found for any release regardless of its age, fixes could be backported to older releases. For issues that are not backported
given an older release, Community LTS trees and branches exist where community members share patches for older
releases. However, these types of patches do not go through the same release process as do point releases. You can find
more information about stable branch maintenance at https://wiki.yoctoproject.org/wiki/Stable branch maintenance.

3.4. Testing and Quality Assurancef]

Part of the Yocto Project development and release process is quality assurance through the execution of test strategies. Test
strategies provide the Yocto Project team a way to ensure a release is validated. Additionally, because the test strategies are
visible to you as a developer, you can validate your projects. This section overviews the available test infrastructure used in
the Yocto Project. For information on how to run available tests on your projects, see the "Performing_Automated Runtime
Testing" section in the Yocto Project Development Tasks Manual.

The QA/testing infrastructure is woven into the project to the point where core developers take some of it for granted. The
infrastructure consists of the following pieces:

e bitbake-selftest: A standalone command that runs unit tests on key pieces of BitBake and its fetchers.

e sanity.bbclass: This automatically included class checks the build environment for missing tools (e.g. gCC) or
common misconfigurations such as MACHTNE set incorrectly.

« insane.bbclass: This class checks the generated output from builds for sanity. For example, if building for an
ARM target, did the build produce ARM binaries. If, for example, the build produced PPC binaries then there is a problem.

. testimage .bbclass: This class performs runtime testing of images after they are built. The tests are usually
used with QEMU to boot the images and check the combined runtime result boot operation and functions. However, the
test can also use the IP address of a machine to test.

o ptest: Runs tests against packages produced during the build for a given piece of software. The test allows the
packages to be be run within a target image.

e Oe—-selftest: Tests combination BitBake invocations. These tests operate outside the OpenEmbedded build system
itself. The oe—selftest can run all tests by default or can run selected tests or test suites.

Note

Running oe—sel ftest requires host packages beyond the "Essential" grouping. See the
"Required Packages for the Build Host" section for more information.

Originally, much of this testing was done manually. However, significant effort has been made to automate the tests so that
more people can use them and the Yocto Project development team can run them faster and more efficiently.

The Yocto Project's main Autobuilder (autobuilder.yoctoproject.orq) publicly tests each Yocto Project
release's code in the OE-Core, Poky, and BitBake repositories. The testing occurs for both the current state of the "master"
branch and also for submitted patches. Testing for submitted patches usually occurs in the "ross/mut" branch in the
poky—contrib repository (i.e. the master-under-test branch) or in the "master-next" branch in the poky repository.

Note

You can find all these branches in the Yocto Project Source Repositories.

Testing within these public branches ensures in a publicly visible way that all of the main supposed architectures and recipes
in OE-Core successfully build and behave properly.

Various features such asmultilib, sub architectures (e.g. Xx32, poky-tiny, musl, no-x11 and and so
forth), bitbake—-selftest, and oe—-selftest are tested as part of the QA process of a release. Complete
testing and validation for a release takes the Autobuilder workers several hours.

Note

The Autobuilder workers are non-homogeneous, which means regular testing across a variety of
Linux distributions occurs. The Autobuilder is limited to only testing QEMU-based setups and not
real hardware.

Finally, in addition to the Autobuilder's tests, the Yocto Project QA team also performs testing on a variety of platforms,
which includes actual hardware, to ensure expected results.

Chapter 4. Migrating to a Newer Yocto Project Releasef|

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 17/235

https://wiki.yoctoproject.org/wiki/Stable_branch_maintenance
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#dev-manual-qemu
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#testing-packages-with-ptest
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#source-repositories

3/4/2020

Yocto Project Reference Manual

Table of Contents

4.1.

General Migration Considerations

4.2.

Moving_to the Yocto Project 1.3 Release

4.3

4.2.1. Local Configuration
4.2.2. Recipes
4.2.3. Linux Kernel Naming

. Moving_to the Yocto Project 1.4 Release

4.4.

4.3.1. BitBake

:3.2. Build Behavior

3. Proxies and Fetching_Source

.3.4. Custom Interfaces File (netbase change)
.5. Remote Debugging
6
7
8

.3.6. Variables
. Target Package Management with RPM
. Recipes Moved
4.3.9. Removals and Renames

Moving_to the Yocto Project 1.5 Release

4.5.

4.4.1. Host Dependency Changes

4.4.2. atom—pcC Board Support Package (BSP)
4.4.3. BitBake

4.4.4. QA Warnings

4.4.5. Directory Layout Changes

4.4.6. Shortened Git SRCREV Values

4.4.7. IMAGE FEATURES
4.4.8. /run

4.4.9. Removal of Package Manager Database Within Image Recipes
4.4.10. Images Now Rebuild Only on Changes Instead of Every Time
4.4.11. Task Recipes

4.4.12. BusyBox

4.4.13. Automated Image Testing

4.4.14. Build History

4.4.15. udev

4.4.16. Removed and Renamed Recipes
4.4.17. Other Changes

Moving_to the Yocto Project 1.6 Release

4.6

4.5.1. archiver Class

4.5.2. Packaging_Changes

4.5.3. BitBake

4.5.4. Changes to Variables

4.5.5. Package Test (ptest)

4.5.6. Build Changes

4.5.7. gemu-native

4.5.8. core-image-basic
4.5.9. Licensing

4.5.10. CFT.AGS Options

4.5.11. Custom Image Output Types
4.5.12. Tasks

4.5.13. update-alternative Provider
4.5.14. virtclass Overrides

4.5.15. Removed and Renamed Recipes
4.5.16. Removed Classes
4.5.17. Reference Board Support Packages (BSPs),

. Moving_to the Yocto Project 1.7 Release

4.6.2. Minimum Git version

4.6.3. Autotools Class Changes

4.6.4. Binary Configuration Scripts Disabled
4.6.5.eglibc 2.19 Replaced with glibc 2.20
4.6.6. Kernel Module Autoloading

4.6.7. QA Check Changes

4.6.8. Removed Recipes

4.6.9. Miscellaneous Changes

4.7. Moving_to the Yocto Project 1.8 Release

4.7.1. Removed Recipes

4.7.2. BlueZ 4.x / 5.x Selection

.3. Kernel Build Changes

.4. SSL 3.0 is Now Disabled in OpenSSL
5

6

. Default Sysroot Poisoning

.6. Rebuild Improvements
4.7.7. QA Check and Validation Changes
4.7.8. Miscellaneous Changes

4.8. Moving_to the Yocto Project 2.0 Release

4.8.1. GCC5

.8.2. Gstreamer 0.10 Removed
.8.3. Removed Recipes

.8.4. BitBake datastore improvements
.8.5. Shell Message Function Changes
.8.6.
.8.7.
.8.8.

Extra Development/Debug_Package Cleanup

Recipe Maintenance Tracking_Data Moved to OE-Core

Automatic Stale Sysroot File Cleanup

4.8.9. 1inux—yocto Kernel Metadata Repository Now Split from Source
4.8.10. Additional QA checks

4.8.11. Miscellaneous Changes

R o Ea g e E N
00 [N O (U | (W [N

4.9. Moving_to the Yocto Project 2.1 Release

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

18/235

3/4/2020 Yocto Project Reference Manual

4.9.1. Variable Expansion in Python Functions

4.9.2. Overrides Must Now be Lower-Case

4.9.3. Expand Parameter to getVar ()_and getVarF1lag_()_is Now Mandatory,
4.9.4. Makefile Environment Changes

4.9.5. libexecdir Revertedto $ {prefix}/libexec

4.9.6.ac_cv sizeof off tisNolonger Cached in Site Files
4.9.7. Image Generation is Now Split Out from Filesystem Generation
4.9.8. Removed Recipes
.9.9. Class Changes
0. Build System User Interface Changes
1. ADT Removed
2. Poky Reference Distribution Changes
3
4

.9.13. Packaging_Changes
. Tuning_File Changes
15. Supporting GObject Introspection
.9.16. Miscellaneous Changes

4.10. Moving_to the Yocto Project 2.2 Release
10.1. Minimum Kernel Version
10.2. Staging_Directories in Sysroot Has Been Simplified
10.3. Removal of Old Images and Other Files in tmp /depl oy Now Enabled
10.4. Python Changes
10.5. uClibc Replaced by musl
10.6. S {B} No Longer Default Working_Directory for Tasks
10.7. rungemu Ported to Python
.10.8. Default Linker Hash Style Changed
4.10.9. KERNET, IMAGE BASE NAME no Longer Uses KERNEL IMAGETYPE
10.10. BitBake Changes
.10.11. Swabber has Been Removed
10.12. Removed Recipes
10.13. Removed Classes
10.14. Minor Packaging_Changes
10.15. Miscellaneous Changes

LB S S S S S

4.11. Moving_to the Yocto Project 2.3 Release
11.1. Recipe-specific Sysroots
11.2. PATH Variable

.11.3. Changes to Scripts
11.4. Changes to Functions
.11.5. BitBake Changes
11.6. Absolute Symbolic Links
.11.7. GPLv2 Versions of GPLv3 Recipes Moved
11.8. Package Management Changes
11.9. Removed Recipes
.11.10. Wic Changes
11.11. QA Changes
.11.12. Miscellaneous Changes

S S B S S 1 |

4.12. Moving_to the Yocto Project 2.4 Release
4.12.1. Memory Resident Mode
4.12.2. Packaging_Changes
4.12.3. Removed Recipes
4.12.4. Kernel Device Tree Move
4.12.5. Package QA Changes
4.12.6. README File Changes

4.12.7. Miscellaneous Changes

4.13. Moving_to the Yocto Project 2.5 Release
.13.1. Packaging_Changes

. Removed Recipes

. Scripts and Tools Changes

. BitBake Changes

. Python and Python 3 Changes

. Miscellaneous Changes

B S
= = [= =
W |W (W W |W

4.14. Movi

]
U1 B W IN (=S (O 0T AW (N

g_to the Yocto Project 2.6 Release
. GCC 8.2 is Now Used by Default
. Removed Recipes

. Packaging_Changes

. XOrg_Protocol dependencies

ol el
T el e el
I PN I N IS

._.
»
o

. 1inux-yocto Configuration Audit Issues Now Correctly Reported

.14.7. Image/Kernel Artifact Naming_Changes
.14.8. SERTATL, CONSOLE Deprecated
14.9. Configure Script Reports Unknown Options as Errors
.14.10. Override Changes
.14.11. systemd Configuration is Now Split Into systemd—-conf
14.12. Automatic Testing_Changes
.14.13. OpenSSL Changes
14.14. BitBake Changes
14.15. Security Changes
14.16. Post Installation Changes
14.17. Python 3 Profile-Guided Optimization
.14.18. Miscellaneous Changes

I B S S 1 1

4.15. Moving_to the Yocto Project 2.7 Release
4.15.1. BitBake Changes
4.15.2. Eclipse™ Support Removed
4.15.3. qemu—native Splits the System and User-Mode Parts
4.15.4. The upstream-tracking. inc File Has Been Removed

4.15.5. The DTISTRO FEATURES LTBC Variable Has Been Removed

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

19/235

3/4/2020 Yocto Project Reference Manual

5.6. License Value Corrections
5.7. Packaging_Changes

5.8. Removed Recipes

15.9. Removed Classes
4.15.10. Miscellaneous Changes

4.1
4.1
4.1
4.

4.16. Moving_to the Yocto Project 3.0 Release
.16.1. Init System Selection

16.2. LSB Support Removed

16.3. Removed Recipes

16.4. Packaging_Changes

16.5. CVE Checking

16.6. Bitbake Changes

16.7. Sanity Checks
.16.8. Miscellaneous Changes

B B S

This chapter provides information you can use to migrate work to a newer Yocto Project release. You can find the same
information in the release notes for a given release.

4.1. General Migration Considerations|

Some considerations are not tied to a specific Yocto Project release. This section presents information you should consider
when migrating to any new Yocto Project release.

e Dealing with Customized Recipes: Issues could arise if you take older recipes that contain customizations and simply
copy them forward expecting them to work after you migrate to new Yocto Project metadata. For example, suppose you
have a recipe in your layer that is a customized version of a core recipe copied from the earlier release, rather than
through the use of an append file. When you migrate to a newer version of Yocto Project, the metadata (e.g. perhaps an
include file used by the recipe) could have changed in a way that would break the build. Say, for example, a function is
removed from an include file and the customized recipe tries to call that function.

You could "forward-port" all your customizations in your recipe so that everything works for the new release. However,
this is not the optimal solution as you would have to repeat this process with each new release if changes occur that give
rise to problems.

The better solution (where practical) is to use append files (* . bbappend) to capture any customizations you want to
make to a recipe. Doing so, isolates your changes from the main recipe making them much more manageable. However,
sometimes it is not practical to use an append file. A good example of this is when introducing a newer or older version of
a recipe in another layer.

e Updating Append Files: Since append files generally only contain your customizations, they often do not need to be
adjusted for new releases. However, if the . bbappend file is specific to a particular version of the recipe (i.e. its
name does not use the % wildcard) and the version of the recipe to which it is appending has changed, then you will at a
minimum need to rename the append file to match the name of the recipe file. A mismatch between an append file and
its corresponding recipe file (. o) will trigger an error during parsing.

Depending on the type of customization the append file applies, other incompatibilities might occur when you upgrade.
For example, if your append file applies a patch and the recipe to which it is appending is updated to a newer version, the
patch might no longer apply. If this is the case and assuming the patch is still needed, you must modify the patch file so
that it does apply.

4.2. Moving to the Yocto Project 1.3 Releasef|

This section provides migration information for moving to the Yocto Project 1.3 Release from the prior release.

4.2.1. Local Configurationq|
Differences include changes for SSTATE MIRRORS and bblayers.conf.

4.2.1.1. SSTATE_MIRRORST|

The shared state cache (sstate-cache), as pointed to by SSTATE DIR, by default now has two-character subdirectories
to prevent issues arising from too many files in the same directory.T’-\Iso, native sstate-cache packages, which are built to
run on the host system, will go into a subdirectory named using the distro ID string. If you copy the newly structured sstate-
cache to a mirror location (either local or remote) and then point to it in SSTATE MTIRRORS, you need to append
"PATH" to the end of the mirror URL so that the path used by BitBake before the mirror substitution is appended to the path
used to access the mirror. Here is an example:

SSTATE_MIRRORS = "file://.* http://someserver.tld/share/sstate/PATH"

4.2.1.2. bblayers.conf{

The meta—-yocto layer consists of two parts that correspond to the Poky reference distribution and the reference
hardware Board Support Packages (BSPs), respectively: meta—-yocto and meta-yocto-bsp. When running
BitBake for the first time after upgrading, your conf /bblayers.conf file will be updated to handle this change
and you will be asked to re-run or restart for the changes to take effect.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 20/235

3/4/2020 Yocto Project Reference Manual

4.2.2. Recipes]

Differences include changes for the following:
e Python function whitespace

e proto=in SRC_URI

« nativesdk

e Task recipes

« IMAGE FEATURES

e Removed recipes

4.2.2.1. Python Function Whitespacef

All Python functions must now use four spaces for indentation. Previously, an inconsistent mix of spaces and tabs existed,
which made extending these functions using append or prepend complicated given that Python treats whitespace
as syntactically significant. If you are deﬁning_or extending an_y Python functions (e.g. populate package s,

do unpack, do patch and so forth) in custom recipes or classes, you need to ensure you are using consistent
fourTspace indentation.

4.2.2.2. proto=in SRC_URIf

Any use of proto=in SRC_URT needs to be changed to protocol=. In particular, this applies to the following
URIs:

e sVn://
e bzr://
e hg://

e« Osc://

Other URIs were already using protocol=. This change improves consistency.

4.2.2.3. nativesdk(

The suffix nativesdk is now implemented as a prefix, which simplifies a lot of the packaging code for nativesdk
recipes. All custom nat ivesdk recipes, which are relocatable packages that are native to SDK_ARCH, and any
references need to be updated to use nativesdk—* instead of *—nativesdk.

4.2.2.4. Task Recipes]

"Task" recipes are now known as "Package groups" and have been renamed from task—* .bb to packagegroup-
* . bb. Existing references to the previous task—* names should work in most cases as there is an automatic upgrade
path for most packages. However, you should update references in your own recipes and configurations as they could be
removed in future releases. You should also rename any custom task—* recipes to packagegroup-*, and change
them to inherit packagegroup instead of task, as well as taking the opportunity to remove anything now handled
by packagegroup.bbclass, such as providing —dev and —dbg packages, setting

LIC FILES CHKSUM, and so forth. See the "packagegroup.bbclass" section for further details.

4.2.2.5. IMAGE_FEATUREST

Image recipes that previously included "apps-console-core" in IMAGE_FEATURES should now include "splash" instead
to enable the boot-up splash screen. Retaining "apps-console-core" will still include the splash screen but generates a
warning. The "apps-x11-core" and "apps-x11-games" IMAGE FEATURES features have been removed.

4.2.2.6. Removed Recipesf

The following recipes have been removed. For most of them, it is unlikely that you would have any references to them in
your own Metadata. However, you should check your metadata against this list to be sure:

o libx11-trim: Replaced by 1ilbx11, which has a negligible size difference with modern Xorg.

o xserver-xorg-lite: Use xserver—-xorg, which has a negligible size difference when DRI and GLX
modules are not installed.

« xserver-kdrive: Effectively unmaintained for many years.
e mesa-xlib: No longer serves any purpose.

« galago: Replaced by telepathy.

e gail: Functionality was integrated into GTK+ 2.13.

« eggdbus: No longer needed.

« gcc-*-intermediate: The build has been restructured to avoid the need for this step.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 21/235

3/4/2020

Yocto Project Reference Manual

o libgsmd: Unmaintained for many years. Functionality now provided by 0 fono instead.

» contacts, dates, tasks, eds-tools: Largely unmaintained PIM application suite. It has been moved to meta—-gnome
inmeta-openembedded.

In addition to the previously listed changes, the meta-demoapps directory has also been removed because the
recipes in it were not being maintained and many had become obsolete or broken. Additionally, these recipes were not
parsed in the default configuration. Many of these recipes are already provided in an updated and maintained form within
the OpenEmbedded community layers such as meta—oe and meta—-gnome. For the remainder, you can now find
them in the meta—extras repository, which is in the Yocto Project Source Repositories.

4.2.3. Linux Kernel Namingf|
The naming scheme for kernel output binaries has been changed to now include PE as part of the filename:

KERNEL_IMAGE_BASE_NAME ?= "${KERNEL_IMAGETYPE}-${PE}-${PV}-${PR}-${MACHINE}-${DATETIME}"

Because the PE variable is not set by default, these binary files could result with names that include two dash characters.
Here is an example:

bzImage--3.10.9+git0@+cd502a8814_7144bcc4b8-r0-qemux86-64-20130830085431.bin

4.3. Moving to the Yocto Project 1.4 Releasef|

This section provides migration information for moving to the Yocto Project 1.4 Release from the prior release.

4.3.1. BitBake(

Differences include the following:

e Comment Continuation: If a comment ends with a line continuation (\) character, then the next line must also be a
comment. Any instance where this is not the case, now triggers a warning. You must either remove the continuation
character, or be sure the next line is a comment.

e Package Name Overrides: The runtime package specific variables RDEPENDS, RRECOMMENDS, RSUGGESTS,
RPROVIDES, RCONFLICTS, RREPLACES, FILES, ALLOW EMPTY, and the pre, post, install, and
uninstall script functions pkg preinst, pkg postinst, pkg prerm, and pkg postrm should
always have a package name override. For example,_use RDEPENDS $_{ PN} for the main p_ackage instead of
RDEPENDS. BitBake uses more strict checks when it parses recipes. B

4.3.2. Build Behavior{

Differences include the following:

e Shared State Code: The shared state code has been optimized to avoid running unnecessary tasks. For example, the
following no longer populates the target sysroot since that is not necessary:

$ bitbake -c rootfs some-image

Instead, the system just needs to extract the output package contents, re-create the packages, and construct the root
filesystem. This change is unlikely to cause any problems unless you have missing declared dependencies.

e Scanning Directory Names: When scanning for files in SRC URT, the build system now uses
FITLESOVERRIDES instead of OVERRIDES for the dirgctory names. In general, the values previously in
OVERRIDES are now in FILESOVERRIDES as well. However, if you relied upon an additional value you
previously added to OVERRIDES, you might now need to add it to FTLESOVERRIDES unless you are already
adding it through the MACHINEOVERRTIDES or DISTROOVERRIDES variables, as appropriate. For more
related changes, see the "Variables" section.

4.3.3. Proxies and Fetching Sourcef|

A new oe—git—proxy script has been added to replace previous methods of handling proxies and fetching source from
Git. See the meta-yocto/conf/site.conf.sample file for information on how to use this script.

4.3.4. Custom Interfaces File (netbase change)q

If you have created your own custom etc/network/interfaces file by creating an append file for the
netbase recipe, you now need to create an append file for the init—1ifupdown recipe instead, which you can find
in the Source Directory at meta/recipes-core/init-1ifupdown. For information on how to use append
files, see the "Using_.bbappend Files" section in the Yocto Project Development Tasks Manual.

4.3.5. Remote Debugging(

Support for remote debugging with the Eclipse IDE is now separated into an image feature (eclipse-debug) that
corresponds to the packagegroup-core-eclipse—-debug package group. Previously, the debugging feature

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

22/235

http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#source-repositories
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#using-bbappend-files

3/4/2020

Yocto Project Reference Manual

was included through the tools—debug image feature, which corresponds to the packagegroup—-core-—
tools-debug package group.

4.3.6. Variables

The following variables have changed:

SANITY_TESTED_DISTROS: This variable now uses a distribution ID, which is composed of the host distributor

ID followed by the release. Previously, SANITY TESTED DISTROS was composed of the description field. For

example, "Ubuntu 12.10" becomes "Ubuntu-12.10". You do not need to worry about this change if you are not specifically

setting this variable, or if you are specifically setting it to "".

SRC_URI: The S{PN}, S{PE}, S{P}, and FILE DIRNAME directories have been dropped from the default
value of the FETLESPATH variable, which is used as the search path for finding files referred to in SRC__URT. If you
have a recipe that relied upon these directories, which would be unusual, then you will need to add the appropriate paths

within the recipe or, alternatively, rearrange the files. The most common locations are still covered by S {BP},
S {BPN}, and "files", which all remain in the default value of FILESPATH.

4.3.7. Target Package Management with RPM{

If runtime package management is enabled and the RPM backend is selected, Smart is now installed for package download,
dependency resolution, and upgrades instead of Zypper. For more information on how to use Smart, run the following
command on the target:

smart --help

4.3.8. Recipes Moved]

The following recipes were moved from their previous locations because they are no longer used by anything in the
OpenEmbedded-Core:

clutter-box2d: Now resides in the meta—oe layer.
evolution-data-server: Now resides in the meta-gnome layer.
gthumb: Now resides in the meta—gnome layer.

gtkhtml2: Now resides in the meta—oe layer.

gupnp: Now resides in the meta-multimedia layer

gypsy: Now resides in the meta—oe layer.

libcanberra: Now resides in the meta—-gnome layer.
libgdata: Now resides in the meta—gnome layer.
libmusicbrainz: Now resides in the meta-multimedia layer.
metacity: Now resides in the meta—-gnome layer.

polkit: Now resides in the meta—oe layer.

zeroconf: Now resides in the meta—-networking layer.

4.3.9. Removals and Renames]|

The following list shows what has been removed or renamed:

evieext: Removed because it has been removed from XServer since 2008.
Gtk+ DirectFB: Removed support because upstream Gtk+ no longer supports it as of version 2.18.

libxfontcache / xfontcacheproto: Removed because they were removed from the Xorg server in
2008.

libxp / libxprintapputil / libxprintutil / printproto: Removed because the

XPrint server was removed from Xorg in 2008.
libxtrap / xtrapproto: Removed because their functionality was broken upstream.

linux-yocto 3.0 kernel: Removed with linux-yocto 3.8 kernel being added. The linux-yocto 3.2 and linux-yocto 3.4
kernels remain as part of the release.

1sbsetup: Removed with functionality now provided by 1 sbtest.
matchbox-stroke: Removed because it was never more than a proof-of-concept.

matchbox-wm-2 / matchbox-theme-sato-2: Removed because they are not maintained. However,
matchbox—-wmand matchbox—-theme-sato are still provided.

mesa-dri: Renamed to mesa.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

23/235

3/4/2020 Yocto Project Reference Manual

« mesa-xl1ib: Removed because it was no longer useful.
o mutter: Removed because nothing ever uses it and the recipe is very old.
« orinoco-conf: Removed because it has become obsolete.

o update-modules: Removed because it is no longer used. The kernel module postinstall and postrm
scripts can now do the same task without the use of this script.

o web: Removed because it is not maintained. Superseded by web-webkit.

o xf86bigfontproto: Removed because upstream it has been disabled by default since 2007. Nothing uses
xf86bigfontproto.

o xf86rushproto: Removed because its dependency in XServer was spurious and it was removed in 2005.

. zypper / libzypp / sat-solver:Removed and been functionally replaced with Smart (python-
smartpm) when RPM packaging is used and package management is enabled on the target.

4.4. Moving to the Yocto Project 1.5 Releasef|

This section provides migration information for moving to the Yocto Project 1.5 Release from the prior release.

4.4.1. Host Dependency Changesf|

The OpenEmbedded build system now has some additional requirements on the host system:

e Python 2.7.3+

e Tar 1.24+

e Git1.7.8+

e Patched version of Make if you are using 3.82. Most distributions that provide Make 3.82 use the patched version.

If the Linux distribution you are using on your build host does not provide packages for these, you can install and use the
Buildtools tarball, which provides an SDK-like environment containing them.

For more information on this requirement, see the "Required Git,_tar,_ and Python Versions" section.

4.4.2. atom-pc Board Support Package (BSP)

The atom-pc hardware reference BSP has been replaced by a gener i cx 86 BSP. This BSP is not necessarily
guaranteed to work on all x86 hardware, but it will run on a wider range of systems than the atom—-pc did.

Note

Additionally, a genericx86-64 BSP has been added for 64-bit Atom systems.

4.4.3. BitBake]

The following changes have been made that relate to BitBake:

e BitBake now supports a removVe operator. The addition of this operator means you will have to rename any items in
recipe space (functions, variables) whose names currently contain __remove orendwith remove to avoid
unexpected behavior.

e BitBake's global method pool has been removed. This method is not particularly useful and led to clashes between recipes
containing functions that had the same name.

e The "none" server backend has been removed. The "process" server backend has been serving well as the default for a
long time now.

e Thebitbake—-runtask script has been removed.

e S{P} and S{PE} are no longer added to PROVIDES by default in bitbake.conf. These version-specific
PROVIDES items were seldom used. Attempting to use them could result in two versions being built simultaneously
rather than just one version due to the way BitBake resolves dependencies.

4.4.4. QA Warnings(

The following changes have been made to the package QA checks:

e If you have customized ERROR QA or WARN_ QA values in your configuration, check that they contain all of the
issues that you wish to be reported. Previous Yocto Project versions contained a bug that meant that any item not
mentioned in ERROR QA or WARN QA would be treated as a warning. Consequently, several important items were

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 24/235

3/4/2020

Yocto Project Reference Manual

not already in the default value of WARN QA. All of the possible QA checks are now documented in the
"insane.bbclass" section.

« An additional QA check has been added to check if /usr/share/info/dir is being installed. Your recipe should
delete this file within do_install if "make install" is installing it.

e If you are using the buildhistory class, the check for the package version going backwards is now controlled using a
standard QA check. Thus, if you have customized your ERROR QA or WARN QA values and still wish to have this
check performed, you should add "version-going-backwards" to Vour value for one or the other variables depending on
how you wish it to be handled. See the documented QA checks in the "insane .bbclass" section.

4.4.5. Directory Layout Changes]

The following directory changes exist:

e Output SDK installer files are now named to include the image name and tuning architecture through the SDK_NAME
variable.

e Images and related files are now installed into a directory that is specific to the machine, instead of a parent directory
containing output files for multiple machines. The DEPLOY DIR TMAGE variable continues to point to the directory
containing images for the current MACHTINE and should be used aﬁywhere there is a need to refer to this directory. The
rungemu script now uses this variable to find images and kernel binaries and will use BitBake to determine the
directory. Alternatively, you can set the DEPL.OY DIR TMAGE variable in the external environment.

e When buildhistory is enabled, its output is now written under the Build Directory rather than TMPDIR. Doing so makes
it easier to delete TMPDIR and preserve the build history. Additionally, data for produced SDKs is now split by
IMAGE NAME.

e The pkgdata directory produced as part of the packaging process has been collapsed into a single machine-specific
directory. This directory is located under SysroOts and uses a machine-specific name (i.e.
tmp/sysroots/machine/pkgdata).

4.4.6. Shortened Git SRCREV Values|

BitBake will now shorten revisions from Git repositories from the normal 40 characters down to 10 characters within
SRCPYV for improved usability in path and file names. This change should be safe within contexts where these revisions are
used because the chances of spatially close collisions is very low. Distant collisions are not a major issue in the way the
values are used.

4.4.7. IMAGE_FEATURES(

The following changes have been made that relate to IMAGE_FEATURES:

e The value of IMAGE FEATURES is now validated to ensure invalid feature items are not added. Some users
mistakenly add package names to this variable instead of using IMAGE_TNSTALL in order to have the package
added to the image, which does not work. This change is intended to catch those kinds of situations. Valid
IMAGE FEATURES are drawn from PACKAGE _GROUP definitions, COMPLEMENTARY GLOB and a new
"validitems" varflag on IMAGE FEATURES. The "validitems" varflag change allows additional features to be added if
they are not provided using the previous two mechanisms.

e The previously deprecated "apps-console-core” TMAGE FEATURES item is no longer supported. Add "splash” to
IMAGE FEATURES if you wish to have the splash screen enabled, since this is all that apps-console-core was doing.

4.4.8. /runf

The / run directory from the Filesystem Hierarchy Standard 3.0 has been introduced. You can find some of the implications
for this change here. The change also means that recipes that install files to /var/run must be changed. You can find a
guide on how to make these changes here.

4.4.9. Removal of Package Manager Database Within Image Recipes]

The image core—-image-minimal no longer adds remove packaging data filesto

ROOTFEFS POSTPROCESS COMMAND. This addition is now handled automatically when "package-management" is
not in IMAGE FEATURES. If you have custom image recipes that make this addition, you should remove the lines, as
they are not needed and might interfere with correct operation of postinstall scripts.

4.4.10. Images Now Rebuild Only on Changes Instead of Every Timef{

The do_rootfs and other related image construction tasks are no longer marked as "nostamp". Consequently, they will
only be re-executed when their inputs have changed. Previous versions of the OpenEmbedded build system always rebuilt
the image when requested rather when necessary.

4.4.11. Task Recipes]

The previously deprecated task .blbclass has now been dropped. For recipes that previously inherited from this class,
you should rename them from task—* to packagegroup—* and inherit packagegroup instead.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

25/235

http://cgit.openembedded.org/openembedded-core/commit/?id=0e326280a15b0f2c4ef2ef4ec441f63f55b75873
http://permalink.gmane.org/gmane.comp.handhelds.openembedded/58530

3/4/2020 Yocto Project Reference Manual

For more information, see the "packagegroup .bbclass" section.

4.4.12. BusyBoxT

By default, we now split BusyBox into two binaries: one that is suid root for those components that need it, and another for
the rest of the components. Splitting BusyBox allows for optimization that eliminates the tinyl ogin recipe as
recommended by upstream. You can disable this split by setting BUSYBOX SPLIT SUID to "0".

4.4.13. Automated Image Testing(

A new automated image testing framework has been added through the testimage .bbclass class. This
framework replaces the older imagetest—-gemu framework.

You can learn more about performing automated image tests in the "Performing_Automated Runtime Testing" section in the
Yocto Project Development Tasks Manual.

4.4.14. Build Historyq

Following are changes to Build History:

o Installed package sizes: installed-package-sizes.txt for an image now records the size of the files
installed by each package instead of the size of each compressed package archive file.

e The dependency graphs (depends™* . dot) now use the actual package names instead of replacing dashes, dots and
plus signs with underscores.

e Thebuildhistory-diffandbuildhistory-collect-srcrevs utilities have improved
command-line handling. Use the ——help option for each utility for more information on the new syntax.

For more information on Build History, see the "Maintaining Build Output Quality" section in the Yocto Project Development
Tasks Manual.

4.4.15. udevy

Following are changes to udev:

e udev no longer brings in udev-extraconf automatically through RRECOMMENDS, since this was originally
intended to be optional. If you need the extra rules, then add udev—-extraconf to your image.

e udevV no longer bringsin pciutils—-ids or usbutils-ids through RRECOMMENDS. These are not
needed by udevV itself and removing them saves around 350KB.

4.4.16. Removed and Renamed Recipes]
e The 1inux-yocto 3.2 kernel has been removed.
¢ libtool-nativesdk hasbeen renamed to nativesdk-libtool.

° tinylogin has been removed. It has been replaced by a suid portion of Busybox. See the "BusyBox" section for
more information.

« external-python-tarball has been renamed to buildtools-tarball.
« web-webkit has been removed. It has been functionally replaced by midori.

o imake has been removed. It is no longer needed by any other recipe.

. transfig—native has been removed. It is no longer needed by any other recipe.

¢ anjuta-remote—run has been removed. Anjuta IDE integration has not been officially supported for several
releases.

4.4.17. Other Changesf

Following is a list of short entries describing other changes:

e run-postinsts: Make this generic.

s base-files: Remove the unnecessary media /xxx directories.

¢ alsa-state: Provide an empty asound.conf by default.

« classes/image: Ensure BAD RECOMMENDATTIONS supports pre-renamed package names.

« classes/rootfs rpm:Implement BAD RECOMMENDATIONS for RPM.

e systemd: Remove systemd unitdirifsystemdisnotin DISTRO FEATURES.

¢ systemd: Remove init.d dirif systemd unitfile is present and Sysvinit is not a distro feature.

e libpam: Deny all services for the OTHER entries.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 26/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#maintaining-build-output-quality

3/4/2020 Yocto Project Reference Manual

e« image.bbclass: Move runtime mapping rename to avoid conflict withmultilib. see YOCTO
#4993 in Bugzilla for more information.

o linux-—dtb: Use kernel build system to generate the dtD files.

e« kern-tools: Switch from guilt to new kgit—-s2q tool.

4.5. Moving to the Yocto Project 1.6 Releaseq|

This section provides migration information for moving to the Yocto Project 1.6 Release from the prior release.

4.5.1. archiver Class]

The archiver class has been rewritten and its configuration has been simplified. For more details on the source
archiver, see the "Maintaining_Open Source License Compliance During_Your Product's Lifecycle" section in the Yocto Project
Development Tasks Manual.

4.5.2. Packaging Changes

The following packaging changes have been made:

e Thebinutils recipe no longer produces a binutils—-symlinks package. update-alternatives
is now used to handle the preferred binutils variant on the target instead.

e The tc (traffic control) utilities have been split out of the main iproute?2 package and put into the iproute2-
t C package.

e The gtk—engines schemas have been moved to a dedicated gt k—engines—-schemas package.

e The armv7a with thumb package architecture suffix has changed. The suffix for these packages with the thumb
optimization enabled is "t2" as it should be. Use of this suffix was not the case in the 1.5 release. Architecture names will
change within package feeds as a result.

4.5.3. BitBakef|

The following changes have been made to BitBake.

4.5.3.1. Matching Branch Requirement for Git Fetchingf

When fetching source from a Git repository using SRC_URT, BitBake will now validate the SRCREV value against the
branch. You can specify the branch using the following form:

SRC_URI = "git://server.name/repository;branch=branchname"

If you do not specify a branch, BitBake looks in the default "master" branch.

Alternatively, if you need to bypass this check (e.g. if you are fetching a revision corresponding to a tag that is not on any
branch), you can add ";nobranch=1" to the end of the URL within SRC_URT.

4.5.3.2. Python Definition substitutions{

BitBake had some previously deprecated Python definitions within its oo module removed. You should use their sub-module
counterparts instead:

e bb.MalformedUrl:usebb.fetch.MalformedUrl.

e bb.encodeurl: usebb.fetch.encodeurl.

e bb.decodeurl: usebb.fetch.decodeurl

e bb.mkdirhier:usebb.utils.mkdirhier.

e bb.movefile:uUsebb.utils.movefile.

e bb.copyfile:usebb.utils.copyfile.

e bb.which:usebb.utils.which.

e bb.vercmp string:Usebb.utils.vercmp string.

e bb.vercmp: Usebb.utils.vercmp.

4.5.3.3. SVK Fetcherq

The SVK fetcher has been removed from BitBake.

4.5.3.4. Console Output Error Redirection{

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 27/235

https://bugzilla.yoctoproject.org/show_bug.cgi?id=4993
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle

3/4/2020 Yocto Project Reference Manual

The BitBake console UI will now output errors to St derr instead of Stdout. Consequently, if you are piping or
redirecting the output of bitbake to somewhere else, and you wish to retain the errors, you will need to add 2>&1 (or
something similar) to the end of your bitlbake command line.

4.5.3.5. task-taskname Overridesq

t ask—taskname overrides have been adjusted so that tasks whose names contain underscores have the underscores
replaced by hyphens for the override so that they now function properly. For example, the task override for

do_populate sdkistask-populate-sdk.

4.5.4. Changes to Variables{

The following variables have changed. For information on the OpenEmbedded build system variables, see the "Variables
Glossary" Chapter.

4.5.4.1. TMPDIRY

TMPDIR can no longer be on an NFS mount. NFS does not offer full POSIX locking and inode consistency and can cause
unexpected issues if used to store TMPDIR.

The check for this occurs on startup. If TMPDIR is detected on an NFS mount, an error occurs.

4.5.4.2. PRINCY

The PRINC variable has been deprecated and triggers a warning if detected during a build. For PR increments on
changes, use the PR service instead. You can find out more about this service in the "Working_With a PR Service" section in
the Yocto Project Development Tasks Manual.

4.5.4.3. IMAGE_TYPEST
The "sum.jffs2" option for IMAGE_TYPFS has been replaced by the "jffs2.sum" option, which fits the processing order.

4.5.4.4.COPY_LIC_ MANIFEST]

The COPY TLIC MANTFEST variable must now be set to "1" rather than any value in order to enable it.

4.5.4.5.COPY_LIC_DIRS]

The COPY LTIC DTIRS variable must now be set to "1" rather than any value in order to enable it.

4.5.4.6. PACKAGE GROUP

The PACKAGE_GROUP variable has been renamed to FEATURE PACKAGES to more accurately reflect its
purpose. You can still use PACKAGE GROUP but the OpenEmbedded build system produces a warning message when it
encounters the variable.

4.5.4.7. Preprocess and Post Process Command Variable Behavior{
The following variables now expect a semicolon separated list of functions to call and not arbitrary shell commands:

ROOTFS PREPROCESS COMMAND

ROOTFS POSTPROCESS COMMAND
SDK_POSTPROCESS COMMAND

POPULATE SDK POST_TARGET COMMAND
POPULATE_SDK_POST HOST_COMMAND
IMAGE POSTPROCESS COMMAND
IMAGE_PREPROCESS COMMAND

ROOTFS POSTUNINSTALL COMMAND
ROOTFS_POSTINSTALL COMMAND

For migration purposes, you can simply wrap shell commands in a shell function and then call the function. Here is an
example:

my_postprocess_function() {
echo "hello" > ${IMAGE_ROOTFS}/hello.txt

ROOTFS_POSTPROCESS_COMMAND += "my_postprocess_function; "

4.5.5. Package Test (ptest){

Package Tests (ptest) are built but not installed by default. For information on using Package Tests, see the "Testing
Packages with ptest" section in the Yocto Project Development Tasks Manual. For information on the ptest class, see the
"ptest.bbclass" section.

4.5.6. Build Changesf

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 28/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#working-with-a-pr-service
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#testing-packages-with-ptest

3/4/2020

Yocto Project Reference Manual

Separate build and source directories have been enabled by default for selected recipes where it is known to work (a
whitelist) and for all recipes that inherit the cmake class. In future releases the aut ot 001 s class will enable a
separate build directory by default as well. Recipes building Autotools-based software that fails to build with a separate build
directory should be changed to inherit from the autotools—brokensep class instead of the autotools or
autotools stageclasses.

4.5.7. gemu-nativef

qemu—native now builds without SDL-based graphical output support by default. The following additional lines are
needed in your 1ocal.conf to enable it:

PACKAGECONFIG_pn-gemu-native = "sdl"
ASSUME_PROVIDED += "libsdl-native"

Note

The default 1ocal.conf contains these statements. Consequently, if you are building a

headless system and using a default 1ocal . conf file, you will need comment these two lines
out.

4.5.8. core-image-basic]

core-image-basic has been renamed to core-image-full-cmdline.

In addition to core—image-basic being renamed, packagegroup-core-basic has been renamed to
packagegroup-core-full-cmdline to match.

4.5.9. Licensing(

The top-level LICENSE file has been changed to better describe the license of the various components of OE-Core.
However, the licensing itself remains unchanged.

Normally, this change would not cause any side-effects. However, some recipes point to this file within

LIC FILES CHKSUM (as $ {COREBASE}/LICENSE) and thus the accompanying checksum must be changed
from 3f40d7994397109285ec7b81fdeb3b58 to 4d92cd373abda3937c2bcd 7fbc49d690. A better alternative is to have

LIC FILES CHKSUM point to a file describing the license that is distributed with the source that the recipe is
buildin_g, if possible, rather than pointing to $ { COREBASE } /LICENSE.

4.5.10. CFLAGS Options]

The "-fpermissive" option has been removed from the default CELLAGS value. You need to take action on individual recipes
that fail when building with this option. You need to either patch the recipes to fix the issues reported by the compiler, or you
need to add "-fpermissive" to CELAGS in the recipes.

4.5.11. Custom Image Output Types]

Custom image output types, as selected using IMAGE,_FSTYPES, must declare their dependencies on other image
types (if any) using a new IMAGE _TYPEDEP variable.

4.5.12. Tasksq|

The doipackageiwrite task has been removed. The task is no longer needed.

4.5.13. update-alternative Provider(

The default update—-alternatives provider has been changed from opkg to opkg—utils. This change
resolves some troublesome circular dependencies. The runtime package has also been renamed from update—
alternatives-cworthtoupdate-alternatives-opkg.

4.514. virtclass Overrides]

The virtclass overrides are now deprecated. Use the equivalent class overrides instead (e.g. virtclass-
native becomes class—-native.)

4.5.15. Removed and Renamed Recipes]

The following recipes have been removed:

« packagegroup-toolset-native - This recipe is largely unused.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

29/235

3/4/2020

Yocto Project Reference Manual

e linux-yocto-3.8 - Support for the Linux yocto 3.8 kernel has been dropped. Support for the 3.10 and 3.14
kernels have been added with the 1 inux-yocto-3.10 and linux-yocto-3.14 recipes.

¢ ocf-1linux - This recipe has been functionally replaced using cryptodev-1linux.

o genext2fs-genext2fsisno longer used by the build system and is unmaintained upstream.

e 7S - This provided an ancient version of Mozilla's javascript engine that is no longer needed.

¢ zaurusd - The recipe has been moved to the meta—-handheld layer.

e eglibc 2.17 - Replaced by the eglibc 2.19 recipe.

e gcc 4.7.2 -Replaced by the now stable gcc 4.8.2.

¢ external-sourcery-toolchain - this recipe is now maintained in the meta—-sourcery layer.

¢ linux-libc-headers-yocto 3.4+git - Now using version 3.10 of the linux-libc-headers
by default.

e meta-toolchain-gmae - This recipe is obsolete.
« packagegroup-core-sdk—gmae - This recipe is obsolete.

« packagegroup-core-standalone—-gmae-sdk-target - This recipe is obsolete.

4.5.16. Removed Classes]

The following classes have become obsolete and have been removed:
« module strip

« pkg metainfo

e pkg distribute

¢ image-empty

4.5.17. Reference Board Support Packages (BSPs){

The following reference BSPs changes occurred:

e The BeagleBoard (beagleboard) ARM reference hardware has been replaced by the BeagleBone
(beaglebone) hardware.

e The RouterStation Pro (routerstationpro) MIPS reference hardware has been replaced by the EdgeRouter Lite
(edgerouter) hardware.

The previous reference BSPs for the beagleboard and routerstationpro machines are still available in a
new meta-yocto-bsp—-old layerin the Source Repositories at http://git.yoctoproject.org/cgit/cgit.cgi/meta-yocto-
bsp-old/.

4.6. Moving to the Yocto Project 1.7 Releasef|

This section provides migration information for moving to the Yocto Project 1.7 Release from the prior release.

4.6.1. Changes to Setting QEMU PACKAGECONFIG Options in local.conf(

The QEMU recipe now uses a number of PACKAGECONEF'TG options to enable various optional features. The method
used to set defaults for these options means that existing 1ocal . conf files will need to be be modified to append to
PACKAGECONFIG for gemu—-native and nativesdk-gemu instead of setting it. In other words, to enable
graphical output for QEMU, you should now have these linesin 1local .conf:

PACKAGECONFIG_append_pn-gemu-native = " sdl"
PACKAGECONFIG_append_pn-nativesdk-gqemu = " sdl1"

4.6.2. Minimum Git version(

The minimum Git version required on the build host is now 1.7.8 because the —— 11 St option is now required by BitBake's
Git fetcher. As always, if your host distribution does not provide a version of Git that meets this requirement, you can use
thebuildtools—-tarball that does. See the "Required Git, tar,_and Python Versions" section for more
information.

4.6.3. Autotools Class Changes(

The following aut ot ool s class changes occurred:

o A separate build directory is now used by default: The aut ot 001 S class has been changed to use a directory
for building (B), which is separate from the source directory (S). This is commonly referred toas B ! = S, or an out-

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

30/235

http://git.yoctoproject.org/
http://git.yoctoproject.org/cgit/cgit.cgi/meta-yocto-bsp-old/
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#git

3/4/2020 Yocto Project Reference Manual

of-tree build.

If the software being built is already capable of building in a directory separate from the source, you do not need to do
anything. However, if the software is not capable of being built in this manner, you will need to either patch the software
so that it can build separately, or you will need to change the recipe to inherit the autotools—brokensep_ class
instead of the autotools orautotools stage classes.

e The ——foreign option is no longer passed to automake when running autoconf: This option tells
automake that a particular software package does not follow the GNU standards and therefore should not be
expected to distribute certain files such as ChangeLog, AUTHORS, and so forth. Because the majority of upstream
software packages already tell automake to enable foreign mode themselves, the option is mostly superfluous.
However, some recipes will need patches for this change. You can easily make the change by patching
configure. ac so that it passes "foreign" to AM INIT AUTOMAKE (). See this commit for an example
showing how to make the patch. o -

4.6.4. Binary Configuration Scripts Disabled|

Some of the core recipes that package binary configuration scripts now disable the scripts due to the scripts previously
requiring error-prone path substitution. Software that links against these libraries using these scripts should use the much
more robust pkg—config instead. The list of recipes changed in this version (and their configuration scripts) is as
follows:

directfb (directfb-config)
freetype (freetype-config)
gpgme (gpgme-config)

libassuan (libassuan-config)
libcroco (croco-6.0-config)
libgcrypt (libgcrypt-config)
libgpg-error (gpg-error-config)
libksba (ksba-config)

libpcap (pcap-config)

libpcre (pcre-config)

libpng (libpng-config, libpngl6-config)
1libsdl (sdl-config)
libusb-compat (libusb-config)
1libxml2 (xml2-config)

libxslt (xslt-config)

ncurses (ncurses-config)

neon (neon-config)

npth (npth-config)

pth (pth-config)

taglib (taglib-config)

Additionally, support for pkg—conf i g has been added to some recipes in the previous list in the rare cases where the
upstream software package does not already provide it.

4.6.5. eglibc 2.19 Replaced with glibc 2.207

Because eglibc and glibc were already fairly close, this replacement should not require any significant changes to
other software that links to gl ibc. However, there were a number of minor changes in glibc 2.20 upstream that
could require patching some software (e.g. the removal of the BSD SOURCE feature test macro).

glibc 2.20 requires version 2.6.32 or greater of the Linux kernel. Thus, older kernels will no longer be usable in
conjunction with it.

For full details on the changes in glibc 2 .20, see the upstream release notes here.

4.6.6. Kernel Module Autoloadingf

Themodule autoload * variable is now deprecated and a new KERNEL MODULE AUTOLOAD variable
should be used instead. Also, module conf * must now be used in conjunction with a new

KERNEL MODULE PROBECONEF variable. The new variables no longer require you to specify the module name as
part of the variable name. This change not only simplifies usage but also allows the values of these variables to be
appropriately incorporated into task signatures and thus trigger the appropriate tasks to re-execute when changed. You
should replace any references to module autoload * with KERNEL MODULE AUTOLOAD, and add any
modules for which module conf * is specified to KERNEL MODULE PROBECONF.

4.6.7. QA Check Changesf

The following changes have occurred to the QA check process:

 Additional QA checks £ile—-rdeps and build-deps have been added in order to verify that file dependencies
are satisfied (e.g. package contains a script requiring /bin /bash) and build-time dependencies are declared,
respectively. For more information, please see the "QA Error and Warning_Messages" chapter.

e Package QA checks are now performed during a new do_package_qa_ task rather than being part of the
doipackagg task. This allows more parallel execution. This change is unlikely to be an issue except for highly
customized recipes that disable packaging tasks themselves by marking them as noexecC. For those packages, you will

need to disable the do package Ja task as well.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 31/235

http://cgit.openembedded.org/openembedded-core/commit/?id=01943188f85ce6411717fb5bf702d609f55813f2
https://sourceware.org/ml/libc-alpha/2014-09/msg00088.html

3/4/2020

Yocto Project Reference Manual

e Files being overwritten during the doip_opulateis Y.Sroot task now trigger an error instead of a warning.

Recipes should not be overwriting files written to the sysroot by other recipes. If you have these types of recipes, you
need to alter them so that they do not overwrite these files.

You might now receive this error after changes in configuration or metadata resulting in orphaned files being left in the
sysroot. If you do receive this error, the way to resolve the issue is to delete your TMPDTIR or to move it out of the way
and then re-start the build. Anything that has been fully built up to that point and does not need rebuilding will be
restored from the shared state cache and the rest of the build will be able to proceed as normal.

4.6.8. Removed Recipes(

The following recipes have been removed:

e« x—1oad: This recipe has been superseded by U-boot SPL for all Cortex-based TI SoCs. For legacy boards, the meta—
t 1 layer, which contains a maintained recipe, should be used instead.

o Ubootchart: This recipe is obsolete. A bootchart?2 recipe has been added to functionally replace it.

° linux—yocto 3. 4: support for the linux-yocto 3.4 kernel has been dropped. Support for the 3.10 and 3.14
kernels remains, while support for version 3.17 has been added.

e €glibc has been removed in favor of glibc. See the "eglibc 2.19 Replaced with glibc 2.20" section
for more information.

4.6.9. Miscellaneous Changesf|

The following miscellaneous change occurred:

e The build history feature now writes build—-id. txt instead of build—id. Additionally, build-id.txt
now contains the full build header as printed by BitBake upon starting the build. You should manually remove old "build-
id" files from your existing build history repositories to avoid confusion. For information on the build history feature, see
the "Maintaining_Build Output Quality" section in the Yocto Project Development Tasks Manual.

4.7. Moving to the Yocto Project 1.8 Releasef|

This section provides migration information for moving to the Yocto Project 1.8 Release from the prior release.

4.7.1. Removed Recipes

The following recipes have been removed:

e Oowl-video: Functionality replaced by gst-player.

e gaku: Functionality replaced by gst-player.

¢ gnome—-desktop: This recipe is now available in meta—-gnome and is no longer needed.

e gsettings-desktop-schemas: This recipe is now available in meta—gnome and is no longer needed.

« python-argparse: The argparse module is already provided in the default Python distribution in a package
named python-argparse. Consequently, the separate python—-argparse recipe is no longer needed.

¢ telepathy-python, libtelepathy, telepathy-glib, telepathy-idle,
telepathy-mission-control: All these recipes have moved to meta—oe and are consequently no
longer needed by any recipes in OpenEmbedded-Core.

e linux-yocto 3.10and linux-yocto 3.17: Support for the linux-yocto 3.10 and 3.17 kernels has
been dropped. Support for the 3.14 kernel remains, while support for 3.19 kernel has been added.

o poky-feed-config-opkg: This recipe has become obsolete and is no longer needed. Use distro-
feed-config frommeta-oe instead.

e libav 0.8.x:1ibav 9.xis now used.

« sed—-native: No longer needed. A working version of Sed is expected to be provided by the host distribution.

4.7.2. BlueZ 4.x | 5.x Selection{

Proper built-in support for selecting BlueZ 5.x in preference to the default of 4.x now exists. To use BlueZ 5.x, simply add
"bluez5" to your DISTRO FEATURES value. If you had previously added append files (* . bbappend) to make this
selection, you can now remove them.

Additionally, a b1l uetooth class has been added to make selection of the appropriate bluetooth support within a recipe a
little easier. If you wish to make use of this class in a recipe, add something such as the following:

inherit bluetooth

PACKAGECONFIG ??= "${@bb.utils.contains('DISTRO_FEATURES', ‘'bluetooth', '${BLUEZ}', '', d)}
PACKAGECONFIG[bluez4] = "--enable-bluetooth,--disable-bluetooth,bluez4”
PACKAGECONFIG[bluez5] = "--enable-bluez5,--disable-bluez5,bluez5"

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

32/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#maintaining-build-output-quality

3/4/2020 Yocto Project Reference Manual

4.7.3. Kernel Build Changesf|

The kernel build process was changed to place the source in a common shared work area and to place build artifacts
separately in the source code tree. In theory, migration paths have been provided for most common usages in kernel recipes
but this might not work in all cases. In particular, users need to ensure that S {S?} (source files) and S {B} (build
artifacts) are used correctly in functions such as do configure anddo install. For kernel recipes that do not
inherit from kernel-yocto orinclude 1inux-yocto.inc, you might wish to refer to the 1inux. inc file
in the meta—oe layer for the kinds of changes you need to make. For reference, here is the commit where the
linux.inc filein meta-oe was updated.

Recipes that rely on the kernel source code and do not inherit the module classes might need to add explicit dependencies
onthe do_shared workdir kernel task, for example:

do_configure[depends] += "virtual/kernel:do_shared_workdir"

4.7.4. SSL 3.0 is Now Disabled in OpenSSL]

SSL 3.0 is now disabled when building OpenSSL. Disabling SSL 3.0 avoids any lingering instances of the POODLE
vulnerability. If you feel you must re-enable SSL 3.0, then you can add an append file (* . bbappend) for the
openss1 recipe to remove "-no-ssi3" from EXTRA OECONE'.

4.7.5. Default Sysroot Poisoningf|

gcc' s default sysroot and include directories are now "poisoned". In other words, the sysroot and include directories are
being redirected to a non-existent location in order to catch when host directories are being used due to the correct options
not being passed. This poisoning applies both to the cross-compiler used within the build and to the cross-compiler produced
in the SDK.

If this change causes something in the build to fail, it almost certainly means the various compiler flags and commands are
not being passed correctly to the underlying piece of software. In such cases, you need to take corrective steps.

4.7.6. Rebuild Improvements

Changes have been made to the base, autotools, and cmake classes to clean out generated files when the
do_configure task needs to be re-executed.

One of the improvements is to attempt to run "make clean" during the do_configure task ifa Makefile exists.
Some software packages do not provide a working clean target within their make files. If you have such recipes, you need to
set CLEANBROKEN to "1" within the recipe, for example:

CLEANBROKEN = "1"

4.7.7. QA Check and Validation Changesq

The following QA Check and Validation Changes have occurred:

o Usage of PRINC previously triggered a warning. It now triggers an error. You should remove any remaining usage of
PRINC in any recipe or append file.

o An additional QA check has been added to detect usage of ${D} in FEILES values where D values should not be used
at all. The same check ensures that SD is used in

pkg preinst/pkg postinst/pkg prerm/pkg postrm functions instead of ${D}.

e S now needs to be set to a valid value within a recipe. If S is not set in the recipe, the directory is not automatically
created. If S does not point to a directory that exists at the time the do_unpack task finishes, a warning will be
shown.

e LICENSE is now validated for correct formatting of multiple licenses. If the format is invalid (e.g. multiple licenses are
specified with no operators to specify how the multiple licenses interact), then a warning will be shown.

4.7.8. Miscellaneous Changesf|

The following miscellaneous changes have occurred:

e The send-error—-report script now expects a "-s" option to be specified before the server address. This
assumes a server address is being specified.

o The oe—pkgdata-util script now expects a "-p" option to be specified before the pkgdata directory, which is
now optional. If the pkgdata directory is not specified, the script will run BitBake to query PKGDATA DIR from
the build environment.

4.8. Moving to the Yocto Project 2.0 Releasef|

This section provides migration information for moving to the Yocto Project 2.0 Release from the prior release.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 33/235

http://cgit.openembedded.org/meta-openembedded/commit/meta-oe/recipes-kernel/linux/linux.inc?id=fc7132ede27ac67669448d3d2845ce7d46c6a1ee

3/4/2020 Yocto Project Reference Manual

4.8.1. GCC 51

The default compiler is now GCC 5.2. This change has required fixes for compilation errors in a number of other recipes.

One important example is a fix for when the Linux kernel freezes at boot time on ARM when built with GCC 5. If you are
using your own kernel recipe or source tree and building for ARM, you will likely need to apply this patch. The standard
linux-yocto kernel source tree already has a workaround for the same issue.

For further details, see https://gcc.gnu.org/gcc-5/changes.html and the porting guide at https://gcc.gnu.org/gcc-
5/porting_to.html.

Alternatively, you can switch back to GCC 4.9 or 4.8 by setting GCCVERSTON in your configuration, as follows:

GCCVERSION = "4.9%"

4.8.2. Gstreamer 0.10 Removed]

Gstreamer 0.10 has been removed in favor of Gstreamer 1.x. As part of the change, recipes for Gstreamer 0.10 and related
software are now located in meta-multimedia. This change results in Qt4 having Phonon and Gstreamer support in
QtWebkit disabled by default.

4.8.3. Removed Recipes|

The following recipes have been moved or removed:

e bluez4: The recipe is obsolete and has been moved due to bluez5 becoming fully integrated. The bluez4
recipe now resides in meta-oe.

e gamin: The recipe is obsolete and has been removed.

¢ gnome-icon-theme: The recipe's functionally has been replaced by adwaita—-icon-theme.

e Gstreamer 0.10 Recipes: Recipes for Gstreamer 0.10 have been removed in favor of the recipes for Gstreamer 1.x.
e 1nsserv: The recipe is obsolete and has been removed.

o« libuniqgue: The recipe is no longer used and has been moved to meta-oe.

o« midori: The recipe's functionally has been replaced by epiphany.

¢ python-gst: The recipe is obsolete and has been removed since it only contains bindings for Gstreamer 0.10.

e gt-mobility: The recipe is obsolete and has been removed since it requires Gstreamer 0.10, which has
been replaced.

e Subversion: All 1.6.x versions of this recipe have been removed.

o« webkit—-gtk: The older 1.8.3 version of this recipe has been removed in favor of webkitgtk.

4.8.4. BitBake datastore improvementsf|

The method by which BitBake's datastore handles overrides has changed. Overrides are now applied dynamically and
bb.data.update data () is now ano-op. Thus, bb.data.update data () is no longer required in
order to apply the correct overrides. In practice, this change is unlikely to require any changes to Metadata. However, these
minor changes in behavior exist:

e All potential overrides are now visible in the variable history as seen when you run the following:

$ bitbake -e

o d.delVar ('varvame') and d.setVar ('varvame', None) result in the variable and all of its overrides
being cleared out. Before the change, only the non-overridden values were cleared.

4.8.5. Shell Message Function Changesf

The shell versions of the BitBake message functions (i.e. bbdebug, bbnote, bbwarn, bbplain, bberror,
and bbfatal) are now connected through to their BitBake equivalents bb . debug (), bb.note (),
bb.warn(),bb.plain(),bb.error(),andbb.fatal (), respectively. Thus, those message functions
that you would expect to be printed by the BitBake UI are now actually printed. In practice, this change means two things:

e If you now see messages on the console that you did not previously see as a result of this change, you might need to
clean up the calls to bbwarn, bberror, and so forth. Or, you might want to simply remove the calls.

e The bbfatal message function now suppresses the full error log in the UI, which means any calls to bbfatal
where you still wish to see the full error log should be replaced by die orbbfatal log.

4.8.6. Extra Development/Debug Package Cleanupq

The following recipes have had extra dev/dlbg packages removed:

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 34/235

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit?id=a077224fd35b2f7fbc93f14cf67074fc792fbac2
https://gcc.gnu.org/gcc-5/changes.html
https://gcc.gnu.org/gcc-5/porting_to.html

3/4/2020

Yocto Project Reference Manual

« acl

¢ apmd

e aspell

o attr

e augeas

e bzip2

e cogl

e« curl

« elfutils

e gcc—target
« libgcc

« libtool

e« libxmu

e opkg

¢ pciutils

e rpm

e sysfsutils
o tiff

e XZ

All of the above recipes now conform to the standard packaging scheme where a single —dev, —dbg, and —
staticdev package exists per recipe.

4.8.7. Recipe Maintenance Tracking Data Moved to OE-Coref

Maintenance tracking data for recipes that was previously part of meta—yocto has been moved to OE-Core. The change
includes package regex.incanddistro alias.inc, which are typically enabled when using the
distrodata class. Additionally, the contents of u}_astreamitracking . 1nc has now been split out to the
relevant recipes.

4.8.8. Automatic Stale Sysroot File Cleanupf

Stale files from recipes that no longer exist in the current configuration are now automatically removed from sysroot as well
as removed from any other place managed by shared state. This automatic cleanup means that the build system now
properly handles situations such as renaming the build system side of recipes, removal of layers from
bblayers.conf,and DISTRO FEATURES changes.

Additionally, work directories for old versions of recipes are now pruned. If you wish to disable pruning old work directories,
you can set the following variable in your configuration:

SSTATE_PRUNE_OBSOLETEWORKDIR = "@"

4.8.9. linux-yocto Kernel Metadata Repository Now Split from Source(

The linux—yocto tree has up to now been a combined set of kernel changes and configuration (meta) data carried in
a single tree. While this format is effective at keeping kernel configuration and source modifications synchronized, it is not
always obvious to developers how to manipulate the Metadata as compared to the source.

Metadata processing has now been removed from the kernel—yocto class and the external Metadata repository
yocto-kernel-cache, which has always been used to seed the 1 inux—yocto "meta" branch. This separate
linux-yocto cache repository is now the primary location for this data. Due to this change, L inux—-yocto is no
longer able to process combined trees. Thus, if you need to have your own combined kernel repository, you must do the split
there as well and update your recipes accordingly. See the meta/recipes-kernel/linux/linux-
yocto 4.1 .Dbb recipe for an example.

4.8.10. Additional QA checksf|
The following QA checks have been added:

o Added a "host-user-contaminated" check for ownership issues for packaged files outside of /home. The check looks for
files that are incorrectly owned by the user that ran BitBake instead of owned by a valid user in the target system.

e Added an "invalid-chars" check for invalid (non-UTF8) characters in recipe metadata variable values (i.e.
DESCRIPTION, SUMMARY, LICENSE, and SECTTON). Some package managers do not support these

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

35/235

3/4/2020

Yocto Project Reference Manual

characters.

e Added an "invalid-packageconfig" check for any options specified in PACKAGECONEF I G that do not match any
PACKAGECONFIG option defined for the recipe.

4.8.11. Miscellaneous Changes

These additional changes exist:
e gtk-update-icon-cache has been renamed to gtk—-icon-utils.

e The tools-profile IMAGE _FEATURES item as well as its corresponding packagegroup and
packagegroup-core-tools-profile nolonger bringin oprofile. Bringingin oprofile was
originally added to aid compilation on resource-constrained targets. However, this aid has not been widely used and is not
likely to be used going forward due to the more powerful target platforms and the existence of better cross-compilation
tools.

e The IMAGE FSTYPES variable's default value now specifies ext4 instead of ext 3.

e All support for the PRINC variable has been removed.

e The packagegroup-core-full-cmdline packagegroup no longer brings in 1ighttpd due to the fact
that bringing in lighttpd is not really in line with the packagegroup's purpose, which is to add full versions of
command-line tools that by default are provided by busybox.

4.9. Moving to the Yocto Project 2.1 Releasef|

This section provides migration information for moving to the Yocto Project 2.1 Release from the prior release.

4.9.1. Variable Expansion in Python Functionsf|

Variable expressions, such as $ { VARNAME } no longer expand automatically within Python functions. Suppressing expansion
was done to allow Python functions to construct shell scripts or other code for situations in which you do not want such
expressions expanded. For any existing code that relies on these expansions, you need to change the expansions to expand
the value of individual variables through d . getVar () . To alternatively expand more complex expressions, use

d.expand ().

4.9.2. Overrides Must Now be Lower-Casef

The convention for overrides has always been for them to be lower-case characters. This practice is now a requirement as
BitBake's datastore now assumes lower-case characters in order to give a slight performance boost during parsing. In
practical terms, this requirement means that anything that ends up in OVERRTDES must now appear in lower-case
characters (e.g. values for MACHINE, TARGET ARCH, DISTRO, and also recipe names if _pn—recipename

overrides are to be effective).

4.9.3. Expand Parameter to getVar () and getvVarFlag () is Now Mandatoryf

The expand parameter to getVar () and getVarFlag () previously defaulted to False if not specified. Now,
however, no default exists so one must be specified. You must change any getVar () calls that do not specify the final
expand parameter to calls that do specify the parameter. You can run the following Sed command at the base of a layer to
make this change:

sed -e 's:\(\.getvar([~,()]1*\)):\1, False):g' -i “grep -ril getvar *°
sed -e 's:\(\.getvarFlag([~,()]*, [*,()1*\)):\1, False):g' -i “grep -ril getvVarFlag *’

Note

The reason for this change is that it prepares the way for changing the default to True in a future
Yocto Project release. This future change is a much more sensible default than False. However, the
change needs to be made gradually as a sudden change of the default would potentially cause
side-effects that would be difficult to detect.

4.9.4. Makefile Environment Changesf|

EXTRA OFEMAKE now defaults to "" instead of "-e MAKEFLAGS=". Setting EXTRA OEMAKE to "-e MAKEFLAGS=" by
default was a historical accident that has required many classes (e.g. autotools, rﬁodule) and recipes to override
this default in order to work with sensible build systems. When upgrading to the release, you must edit any recipe that relies
upon this old default by either setting EXTRA OEMAKE back to "-e MAKEFLAGS=" or by explicitly setting any required
variable value overrides using EXTRA OEMA_KE, which is typically only needed when a Makefile sets a default value for a
variable that is inappropriate for cross—ampilation using the "=" operator rather than the "?=" operator.

4.9.5. libexecdir Reverted to $ {prefix}/libexec]

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

36/235

3/4/2020 Yocto Project Reference Manual

Theuseof S{1libdir}/S${BPN} as libexecdir is different as compared to all other mainstream distributions,
which either uses $ {prefix}/libexecor ${1libdir}. The use is also contrary to the GNU Coding Standards
(i.e. https://www.gnu.org/prep/standards/html_node/Directory-Variables.html) that suggest S {prefix}/libexec
and also notes that any package-specific nesting should be done by the package itself. Finally, having 1l ibexecdir
change between recipes makes it very difficult for different recipes to invoke binaries that have been installed into
libexecdir. The Filesystem Hierarchy Standard (i.e. http://refspecs.linuxfoundation.org/FHS 3.0/fhs/ch04s07.html)
now recognizes the use of $ {prefix}/libexec/, giving distributions the choice between $ {prefix}/1ib
or ${prefix}/1libexec without breaking FHS.

4.9.6. ac_cv_sizeof off tis No Longer Cached in Site Files{

For recipes inheriting the autotools class, ac cv sizeof off tisnolonger cached in the site files for
autoconf. The reason for this change is becausgthe_ac_cv_s_izeo_f_off_t value is not necessarily static per
architecture as was previously assumed. Rather, the value changes based on whether large file support is enabled. For most
software that uses autoconf, this change should not be a problem. However, if you have a recipe that bypasses the
standard do configure task from the aut ot 0ols class and the software the recipe is building uses a very old
version of autocon f, the recipe might be incapable of determining the correct size of Offit during
do_configure.

The best course of action is to patch the software as necessary to allow the default implementation from the autotools
class to work such that aut oreconf succeeds and produces a working configure script, and to remove the overridden
do_configure task such that the default implementation does get used.

4.9.7. Image Generation is Now Split Out from Filesystem Generationf

Previously, for image recipes the do_rootfs task assembled the filesystem and then from that filesystem generated
images. With this Yocto Project release, image generation is split into separate do_image_* tasks for clarity both in
operation and in the code.

For most cases, this change does not present any problems. However, if you have made customizations that directly modify
the do_rootfs task or that mention dO0_rootfs, you might need to update those changes. In particular, if you had
added any tasks after do_root f£'s, you should make edits so that those tasks are after the

do _image complete task rather than after dO roOt s so that the your added tasks run at the correct time.

A minor part of this restructuring is that the post-processing definitions and functions have been moved from the imagg
class to the root fs—postcommands class. Functionally, however, they remain unchanged.

4.9.8. Removed Recipes

The following recipes have been removed in the 2.1 release:
e gCC version 4.8: Versions 4.9 and 5.3 remain.

. qt4: All support for Qt 4.x has been moved out to a separate meta—qt4 layer because Qt 4 is no longer supported
upstream.

e x11lvnc: Moved to the meta—-oe layer.

e linux-yocto-3.14: No longer supported.

e linux-yocto-3.19: No longer supported.

e 1libjpeqg: Replaced by the 1 ibjpeg-turbo recipe.

e pth: Became obsolete.

e 1liboil: Recipe is no longer needed and has been moved to the meta-multimedia layer

¢ gtk-theme-torturer: Recipe is no longer needed and has been moved to the meta—-gnome layer.
. gnome—mime—data: Recipe is no longer needed and has been moved to the meta—-gnome layer.

e udevV: Replaced by the eudevV recipe for compatibility when using Sysvinit with newer kernels.

« python-pygtk: Recipe became obsolete.

e adt-installer: Recipe became obsolete. See the "ADT Removed" section for more information.

4.9.9. Class Changes|

The following classes have changed:

. autotools_stage: Removed because the aut ot 001 S class now provides its functionality. Recipes that
inherited from autotools stage should now inherit from autotools instead.

e boot-directdisk: Merged into the image—vm class. The boot—-directdisk class was rarely directly
used. Consequently, this change should not cause any issues.

¢ bootimg: Merged into the image—1ive class. The boot img class was rarely directly used. Consequently, this
change should not cause any issues.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 37/235

https://www.gnu.org/prep/standards/html_node/Directory-Variables.html
http://refspecs.linuxfoundation.org/FHS_3.0/fhs/ch04s07.html

3/4/2020

Yocto Project Reference Manual

¢ packageinfo: Removed due to its limited use by the Hob UI, which has itself been removed.

4.9.10. Build System User Interface Changes(
The following changes have been made to the build system user interface:
e Hob GTK+-based UI: Removed because it is unmaintained and based on the outdated GTK+ 2 library. The Toaster web-

based UI is much more capable and is actively maintained. See the "Using_the Toaster Web Interface" section in the
Toaster User Manual for more information on this interface.

e "puccho" BitBake UI. Removed because is unmaintained and no longer useful.

4.9.11. ADT Removed]

The Application Development Toolkit (ADT) has been removed because its functionality almost completely overlapped with
the standard SDK and the extensible SDK. For information on these SDKs and how to build and use them, see the Yocto

Note

The Yocto Project Eclipse IDE Plug-in is still supported and is not affected by this change.

4.9.12. Poky Reference Distribution Changesq

The following changes have been made for the Poky distribution:

¢ Themeta-yocto layer has been renamed to meta—poky to better match its purpose, which is to provide the
Poky reference distribution. The meta—yocto—-bsp layer retains its original name since it provides reference
machines for the Yocto Project and it is otherwise unrelated to Poky. References to meta—yoCcto in your
conf/bblayers.conf should automatically be updated, so you should not need to change anything unless you
are relying on this naming elsewhere.

e Theuninative class is now enabled by default in Poky. This class attempts to isolate the build system from the host
distribution's C library and makes re-use of native shared state artifacts across different host distributions practical. With
this class enabled, a tarball containing a pre-built C library is downloaded at the start of the build.

The uninative class is enabled through the meta/conf/distro/include/yocto-
uninative. inc file, which for those not using the Poky distribution, can include to easily enable the same
functionality.

Alternatively, if you wish to build your own Uninative tarball, you can do so by building the uninative-
tarball recipe, making it available to your build machines (e.g. over HTTP/HTTPS) and setting a similar configuration
as the one set by yocto-uninative.inc.

e Static library generation, for most cases, is now disabled by default in the Poky distribution. Disabling this generation
saves some build time as well as the size used for build output artifacts.

Disabling this library generation is accomplished through ameta/conf/distro/include/no-static-
libs. inc, which for those not using the Poky distribution can easily include to enable the same functionality.

Any recipe that needs to opt-out of having the "--disable-static" option specified on the configure command line either
because it is not a supported option for the configure script or because static libraries are needed should set the following
variable:

DISABLE_STATIC = ""
e The separate poky—tiny distribution now uses the musl C library instead of a heavily pared down g1l ibc. Using

musl results in a smaller distribution and facilitates much greater maintainability because musl is designed to have a
small footprint.

If you have used poky—tiny and have customized the g1 1bC configuration you will need to redo those
customizations with musl when upgrading to the new release.

4.9.13. Packaging Changes]

The following changes have been made to packaging:

e The runuser and mountpoint binaries, which were previously in the main uti1l-11inux package, have
been split out into the util-linux—-runuser and util-linux-mountpoint packages, respectively.

e« The python-elementtree package has been merged into the python—-xml package.

4.9.14. Tuning File Changesf

The following changes have been made to the tuning files:

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

38/235

http://www.yoctoproject.org/docs/3.1/toaster-manual/toaster-manual.html#using-the-toaster-web-interface
http://www.yoctoproject.org/docs/3.1/sdk-manual/sdk-manual.html#sdk-using-the-standard-sdk
http://www.yoctoproject.org/docs/3.1/sdk-manual/sdk-manual.html#sdk-extensible
http://www.yoctoproject.org/docs/3.1/sdk-manual/sdk-manual.html

3/4/2020 Yocto Project Reference Manual

e The "no-thumb-interwork" tuning feature has been dropped from the ARM tune include files. Because interworking is
required for ARM EABI, attempting to disable it through a tuning feature no longer makes sense.

Note

Support for ARM OABI was deprecated in gcc 4.7.

e The tune—cortexm*.inc and tune—-cortexr4. inc files have been removed because they are poorly
tested. Until the OpenEmbedded build system officially gains support for CPUs without an MMU, these tuning files would
probably be better maintained in a separate layer if needed.

4.9.15. Supporting GObject Introspection(

This release supports generation of GLib Introspective Repository (GIR) files through GObject introspection, which is the
standard mechanism for accessing GObject-based software from runtime environments. You can enable, disable, and test
the generation of this data. See the "Enabling_GObject Introspection Support" section in the Yocto Project Development
Tasks Manual for more information.

4.9.16. Miscellaneous Changesf|

These additional changes exist:

e The minimum Git version has been increased to 1.8.3.1. If your host distribution does not provide a sufficiently recent

more information on the buildtools tarball.

e The buggy and incomplete support for the RPM version 4 package manager has been removed. The well-tested and
maintained support for RPM version 5 remains.

 Previously, the following list of packages were removed if package-management was not in IMAGE _FEATURES,
regardless of any dependencies:

update-rc.d
base-passwd

shadow
update-alternatives
run-postinsts

With the Yocto Project 2.1 release, these packages are only removed if "read-only-rootfs" is in IMAGE FEATURES,
since they might still be needed for a read-write image even in the absence of a package manager (e.g. if users need to
be added, modified, or removed at runtime).

e Thedevtool modify command now defaults to extracting the source since that is most commonly expected. The
"-x" or "--extract" options are now no-ops. If you wish to provide your own existing source tree, you will now need to
specify either the "-n" or "--no-extract" options when running devtool modify.

¢ If the formfactor for a machine is either not supplied or does not specify whether a keyboard is attached, then the default
is to assume a keyboard is attached rather than assume no keyboard. This change primarily affects the Sato UI.

e The .debug directory packaging is now automatic. If your recipe builds software that installs binaries into directories
other than the standard ones, you no longer need to take care of setting F'T LESi$ {PN} —dbg to pick up the
resulting . debug directories as these directories are automatically found and added.

e Inaccurate disk and CPU percentage data has been dropped from buildstats output. This data has been replaced
with getrusage () data and corrected IO statistics. You will probably need to update any custom code that reads
the buildstats data.

o Themeta/conf/distro/include/package regex.inc is now deprecated. The contents of this
file have been moved to individual recipes.

Tip
Because this file will likely be removed in a future Yocto Project release, it is suggested that you
remove any references to the file that might be in your configuration.

e The v86d/uvesafb has been removed from the genericx86 and genericx86—64 reference machines,
which are provided by the meta—-yocto—-bsp layer. Most modern x86 boards do not rely on this file and it only
adds kernel error messages during startup. If you do still need to support Uvesafb, you can simply add v86d to
your image.

e Build sysroot paths are now removed from debug symbol files. Removing these paths means that remote GDB using an
unstripped build system sysroot will no longer work (although this was never documented to work). The supported
method to accomplish something similar is to set IMAGE GEN DEBUGE'S to "1", which will generate a companion
debug image containing unstripped binaries and associated_debug_sources alongside the image.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 39/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#enabling-gobject-introspection-support
http://www.yoctoproject.org/docs/3.1/sdk-manual/sdk-manual.html#sdk-devtool-use-devtool-modify-to-modify-the-source-of-an-existing-component

3/4/2020

Yocto Project Reference Manual

4.10. Moving to the Yocto Project 2.2 Releasef|

This section provides migration information for moving to the Yocto Project 2.2 Release from the prior release.

4.10.1. Minimum Kernel Versionf|

The minimum kernel version for the target system and for SDK is now 3.2.0, due to the upgrade to glibc 2.24.
Specifically, for AArch64-based targets the version is 3.14. For Nios II-based targets, the minimum kernel version is 3.19.

Note

For x86 and x86_64, you can reset OLDEST KERNEL to anything down to 2.6.32 if desired.

4.10.2. Staging Directories in Sysroot Has Been Simplified|

The way directories are staged in sysroot has been simplified and introduces the new SYSROOT DIRS,
SYSROOT DIRS NATIVE, and SYSROOT DIRS BTLACKLTIST. See the v2 patch series on the OE-Core
Mailing_List for additional information.

4.10.3. Removal of Old Images and Other Files in tmp/deploy Now Enabled(

Removal of old images and other files in tmp/deploy/ is now enabled by default due to a new staging method used
for those files. As a result of this change, the RM_OLD TMAGE variable is now redundant.

4.10.4. Python Changes

The following changes for Python occurred:

4.10.4.1. BitBake Now Requires Python 3.4+

BitBake requires Python 3.4 or greater.

4.10.4.2. UTF-8 Locale Required on Build Host{
A UTF-8 locale is required on the build host due to Python 3. Since C.UTF-8 is not a standard, the default is en_US.UTF-8.

4.10.4.3. Metadata Must Now Use Python 3 Syntax(

The metadata is now required to use Python 3 syntax. For help preparing metadata, see any of the many Python 3 porting
guides available. Alternatively, you can reference the conversion commits for Bitbake and you can use OE-Core as a guide
for changes. Following are particular areas of interest:

subprocess command-line pipes needing locale decoding
the syntax for octal values changed

the 1ter™* () functions changed name

* iterators now return views, not lists

changed names for Python modules

* % ¥

*

4.10.4.4. Target Python Recipes Switched to Python 3|

Most target Python recipes have now been switched to Python 3. Unfortunately, systems using RPM as a package manager
and providing online package-manager support through SMART still require Python 2.

Note

Python 2 and recipes that use it can still be built for the target as with previous versions.

4.10.4.5.buildtools-tarball Includes Python 3

buildtools-tarball now includes Python 3.

4.10.5. uClibc Replaced by muslq

uClibc has been removed in favor of musl. Musl has matured, is better maintained, and is compatible with a wider range of
applications as compared to uClibc.

4.10.6. ${B} No Longer Default Working Directory for Tasksf|

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

40/235

http://lists.openembedded.org/pipermail/openembedded-core/2016-May/121365.html

3/4/2020 Yocto Project Reference Manual

S {B} is no longer the default working directory for tasks. Consequently, any custom tasks you define now need to either
have the [dirs] flag set, or the task needs to change into the appropriate working directory manually (e.g using cd for
a shell task).

Note

The preferred method is to use the [dirs] flag.

4.10.7. rungemu Ported to Pythonf|

rungemu has been ported to Python and has changed behavior in some cases. Previous usage patterns continue to be
supported.

The new rungemu is a Python script. Machine knowledge is no longer hardcoded into rungemu. You can choose to use
the gemuboot configuration file to define the BSP's own arguments and to make it bootable with rungemu. If you use
a configuration file, use the following form:

image-name-machine.qemuboot.conf

The configuration file enables fine-grained tuning of options passed to QEMU without the rungemu script hard-coding any
knowledge about different machines. Using a configuration file is particularly convenient when trying to use QEMU with
machines other than the gemu* machines in OE-Core. The gemuboot . conf file is generated by the gemuboot
class when the root filesystem is being build (i.e. build rootfs). QEMU boot arguments can be set in BSP's configuration file
and the gemuboot class will save them to gemuboot.conf.

If you want to use rungemu without a configuration file, use the following command form:

$ rungemu machine rootfs kernel [options]

Supported machines are as follows:

gemuarm
gemuarmé4
qemux86
qemux86-64
gemuppc
gemumips
gemumips64
gemumipsel
gemumips64el

Consider the following example, which uses the gemux 86— 64 machine, provides a root filesystem, provides an image,
and uses the nographic option:

$ rungemu gemux86-64 tmp/deploy/images/qemux86-64/core-image-minimal-qemux86-64.ext4 tmp/deploy/images/qemux86-64/b
] »

Following is a list of variables that can be set in configuration files such as bsp .conf to enable the BSP to be booted by
rungemu:

Note

"QB" means "QEMU Boot".

QB_SYSTEM_NAME: QEMU name (e.g. "gemu-system-i386")
QB_OPT_APPEND: Options to append to QEMU (e.g. "-show-cursor")
QB_DEFAULT_KERNEL: Default kernel to boot (e.g. "bzImage")
QB_DEFAULT_FSTYPE: Default FSTYPE to boot (e.g. "ext4")
QB_MEM: Memory (e.g. "-m 512")
QB_MACHINE: QEMU machine (e.g. "-machine virt")
QB_CPU: QEMU cpu (e.g. "-cpu gemu32")
QB_CPU_KVM: Similar to QB_CPU except used for kvm support (e.g. "-cpu kvm64")
QB_KERNEL_CMDLINE_APPEND: Options to append to the kernel's -append
option (e.g. "console=ttyS@ console=tty")
QB_DTB: QEMU dtb name
QB_AUDIO_DRV: QEMU audio driver (e.g. "alsa", set it when support audio)
QB_AUDIO_OPT: QEMU audio option (e.g. "-soundhw ac97,es1370"), which is used
when QB_AUDIO_DRV is set.
QB_KERNEL_ROOT: Kernel's root (e.g. /dev/vda)
QB_TAP_OPT: Network option for 'tap' mode (e.g.
"-netdev tap,id=net0,ifname=@TAP@,script=no,downscript=no -device virtio-net-device,netdev=nete").
rungemu will replace "@TAP@" with the one that is used, such as tapo, tapl ...

QB_SLIRP_OPT: Network option for SLIRP mode (e.g. "-netdev user,id=net® -device virtio-net-device,netdev=neto"
QB_ROOTFS_OPT: Used as rootfs (e.g.

"-drive id=disk@,file=@ROOTFS@,if=none,format=raw -device virtio-blk-device,drive=diske").

rungemu will replace "@ROOTFS@" with the one which is used, such as

core-image-minimal-gemuarmé64.ext4.
QB_SERIAL_OPT: Serial port (e.g. "-serial mon:stdio")

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 41/235

http://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html#variable-flags

3/4/2020 Yocto Project Reference Manual

QB_TCPSERIAL_OPT: tcp serial port option (e.g.
" -device virtio-serial-device -chardev socket,id=virtcon,port=@PORT@,host=127.0.0.1 -device
rungemu will replace "@PORT@" with the port number which is used.

< »

To use rungemu, set IMAGE _CLASSES as follows and run rungemu:

Note

For command-line syntax, use rungemu help.

IMAGE_CLASSES += "gemuboot"

4.10.8. Default Linker Hash Style Changed|

The default linker hash style for JCC—CXrOSS is now "sysv" in order to catch recipes that are building software without
using the OpenEmbedded LDE'T.AGS. This change could result in seeing some "No GNU_HASH in the elf binary" QA issues
when building such recipes. You need to fix these recipes so that they use the expected LDFLAGS. Depending on how the
software is built, the build system used by the software (e.g. a Makefile) might need to be patched. However, sometimes
making this fix is as simple as adding the following to the recipe:

TARGET_CC_ARCH += "${LDFLAGS}"

4.10.9. KERNEL IMAGE BASE NAME no Longer Uses KERNEL IMAGETYPE(

The KERNEL TMAGE BASE NAME variable no longer uses the KERNETL _TMAGETYPE variable to create the
image's base name. Because the OpenEmbedded build system can now build multiple kernel image types, this part of the
kernel image base name as been removed leaving only the following:

KERNEL_IMAGE_BASE_NAME ?= "${PKGE}-${PKGV}-${PKGR}-${MACHINE}-${DATETIME}

If you have recipes or classes that use KERNEL TMAGE BASE NAME directly, you might need to update the
references to ensure they continue to work.

4.10.10. BitBake Changes|

The following changes took place for BitBake:

e The "goggle" UI and standalone image-writer tool have been removed as they both require GTK+ 2.0 and were not being
maintained.

o The Perforce fetcher now supports SRCREV for specifying the source revision to use, be it $ { AUTOREV }, changelist
number, p4date, or label, in preference to separate SRC URT parameters to specify these. This change is more in-line
with how the other fetchers work for source control syste?ws. Recipes that fetch from Perforce will need to be updated to
use SRCREV in place of specifying the source revision within SRC_URT.

e Some of BitBake's internal code structures for accessing the recipe cache needed to be changed to support the new multi-
configuration functionality. These changes will affect external tools that use BitBake's tinfoil module. For information on
these changes, see the changes made to the scripts supplied with OpenEmbedded-Core: 1 and 2.

e The task management code has been rewritten to avoid using ID indirection in order to improve performance. This
change is unlikely to cause any problems for most users. However, the setscene verification function as pointed to by
BB SETSCENE VERIFY FUNCTION needed to change signature. Consequently, a new variable named
BB SETSCENE VERIFY FUNCTION?2 has been added allowing multiple versions of BitBake to work with
suita_bly written met;data, which includes OpenEmbedded-Core and Poky. Anyone with custom BitBake task scheduler
code might also need to update the code to handle the new structure.

4.10.11. Swabber has Been Removed{

Swabber, a tool that was intended to detect host contamination in the build process, has been removed, as it has been
unmaintained and unused for some time and was never particularly effective. The OpenEmbedded build system has since
incorporated a number of mechanisms including enhanced QA checks that mean that there is less of a need for such a tool.

4.10.12. Removed Recipes

The following recipes have been removed:

¢ augeas: No longer needed and has been moved to meta-oe.
e directfb: Unmaintained and has been moved to meta-oe.
e gcCcC: Removed 4.9 version. Versions 5.4 and 6.2 are still present.

« gnome-doc-utils: No longer needed.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 42/235

http://git.yoctoproject.org/cgit/cgit.cgi/poky/commit/?id=189371f8393971d00bca0fceffd67cc07784f6ee
http://git.yoctoproject.org/cgit/cgit.cgi/poky/commit/?id=4a5aa7ea4d07c2c90a1654b174873abb018acc67

3/4/2020

Yocto Project Reference Manual

gtk—-doc—-stub: Replaced by gt k—doc.

gtk-engines: No longer needed and has been moved to meta—-gnome.
gtk-sato-engine: Became obsolete.

libglade: No longer needed and has been moved to meta-oe.
libmad: Unmaintained and functionally replaced by 1 1bompg123. 1ibmad has been moved to meta-oe.
libowl: Became obsolete.

libxsettings—-client: No longer needed.

oh-puzzles: Functionally replaced by puzzles.

oprofileui: Became obsolete. OProfile has been largely supplanted by perf.
packagegroup-core-directfb.bb: Removed.
core-image-directfb.bb: Removed.

pointercal: No longer needed and has been moved to meta-oe.
python-imaging: No longer needed and moved to meta-python
python-pyrex: No longer needed and moved to meta-python.
sato-icon-theme: Became obsolete.

swabber—-native: Swabber has been removed. See the entry on Swabber.
ts11ib: No longer needed and has been moved to meta-oe.

uclibc: Removed in favor of musl.

xtscal: No longer needed and moved to meta—-oe

4.10.13. Removed Classes]

The following classes have been removed:

distutils—-native-base: No longer needed.
distutils3-native-base: No longer needed.

sdl: only set DEPENDS and SECT ION, which are better set within the recipe instead.

S1p: Mostly unused.

swabber: See the entry on Swabber.

4.10.14. Minor Packaging Changesf|

The following minor packaging changes have occurred:

grub: Split grub-editenv into its own package.
systemd: Split container and vm related units into a new package, systemd-container.

util-linux: Moved prlimit toaseparate util-linux-prlimit package.

4.10.15. Miscellaneous Changesf|

The following miscellaneous changes have occurred:

package_regex . inc: Removed because the definitions package_regex . inc previously contained
have been moved to their respective recipes.

Both devtool addand recipetool create now use afixed SRCREV by default when fetching from a
Git repository. You can override this in either case to use $ { AUTOREV } instead by using the —a or --—autorev
command-line option

distcc: GTK+ Ul is now disabled by default.
packagegroup-core-tools-testapps: Removed Piglit.

image.bbclass: Renamed COMPRESS(ION) to CONVERSION. This change means that
COMPRESSIONTYPES, COMPRESS DEPENDS and COMPRESS CMD are deprecated in favor of
CONVERSIONTYPES, CONVERSION DEPENDS and CONVERSTION CMD. The COMPRESS* variable
names will still work in the 2.2 release but metadata that does not need to be backWards-compatibIe should be changed
to use the new names as the COMPRESS* ones will be removed in a future release.

gtk-doc: A full version of gt k—doc is now made available. However, some old software might not be capable of
using the current version of gtk—doc to build documentation. You need to change recipes that build such software so
that they explicitly disable building documentation with gt k—doc.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

43/235

3/4/2020 Yocto Project Reference Manual

4.11. Moving to the Yocto Project 2.3 Releasef

This section provides migration information for moving to the Yocto Project 2.3 Release from the prior release.

4.11.1. Recipe-specific Sysroots]

The OpenEmbedded build system now uses one sysroot per recipe to resolve long-standing issues with configuration script
auto-detection of undeclared dependencies. Consequently, you might find that some of your previously written custom
recipes are missing declared dependencies, particularly those dependencies that are incidentally built earlier in a typical build
process and thus are already likely to be present in the shared sysroot in previous releases.

Consider the following:

e Declare Build-Time Dependencies: Because of this new feature, you must explicitly declare all build-time
dependencies for your recipe. If you do not declare these dependencies, they are not populated into the sysroot for the
recipe.

e Specify Pre-Installation and Post-Installation Native Tool Dependencies: You must specifically specify any special
native tool dependencies of pkg preinst and pkg postinst scripts by using the
PACKAGE WRITE DEPS variable. Specifying these_dependencies ensures that these tools are available if these
scripts need to be run on the build host during the do_rootfs task.

As an example, see the dbUS recipe. You will see that this recipe has a pkg postinst thatcalls systemctl
if "systemd" is in DISTRO_FEATURES. In the example, Systemd-sys temctl-native is added to
PACKAGE WRITE DEPS, which is also conditional on "systemd" being in DISTRO FEATURES.

e Examine Recipes that Use SSTATEPOSTINSTFUNCS: You need to examine any recipe that uses
SSTATEPOSTINSTEFUNCS and determine steps to take.

Functions added to SSTATEPOSTINSTEUNCS are still called as they were in previous Yocto Project releases.
However, since a separate sysroot is now being populated for every recipe and if existing functions being called through
SSTATEPOSTINSTEFUNCS are doing relocation, then you will need to change these to use a post-installation script
that is installed by a function added to SYSROOT PREPROCESS FUNCS.

For an example, see the pixbufcache classinmeta/classes/ in the Yocto Project Source Repositories.

Note
The SSTATEPOSTINSTEUNCS variable itself is now deprecated in favor of the

do _populate sysroot[postfuncs] task. Consequently, if you do still have

any function or functions that need to be called after the sysroot component is created for a
recipe, then you would be well advised to take steps to use a post installation script as
described previously. Taking these steps prepares your code for when

SSTATEPOSTINSTEUNCS is removed in a future Yocto Project release.

e Specify the Sysroot when Using Certain External Scripts: Because the shared sysroot is now gone, the scripts 0oe—
find-native-sysroot and oe—-run—-native have been changed such that you need to specify which
recipe's STAGING _DIR NATTIVE is used.

Note

You can find more information on how recipe-specific sysroots work in the
"staging.bbclass" section.

4.11.2. PATH Variablef

Within the environment used to run build tasks, the environment variable PATH is now sanitized such that the normal
native binary paths (/bin, /Sbin, /usr/bin and so forth) are removed and a directory containing symbolic links
linking only to the binaries from the host mentioned in the HOSTTOOLS and HOSTTOOLS NONFEFATAT variables is
added to PATH. N

Consequently, any native binaries provided by the host that you need to call needs to be in one of these two variables at the
configuration level.

Alternatively, you can add a native recipe (i.e. —native) that provides the binary to the recipe's DEPENDS value.

Note

PATH is not sanitized in the same way within devshell. If it were, you would have difficulty
running host tools for development and debugging within the shell.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 44/235

http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#source-repositories

3/4/2020

Yocto Project Reference Manual

4.11.3. Changes to Scripts{

The following changes to scripts took place:

« oe-find-native-sysroot: The usage for the oe-find-native-sysroot script has changed to
the following:

$. oe-find-native-sysroot recipe

You must now supply a recipe for recipe as part of the command. Prior to the Yocto Project 3.1 release, it was not
necessary to provide the script with the command.

« oe-run-native: The usage for the 0Oe—run—-native script has changed to the following:

$ oe-run-native native_recipe tool

You must supply the name of the native recipe and the tool you want to run as part of the command. Prior to the Yocto
Project 3.1 release, it was not necessary to provide the native recipe with the command.

o« cleanup-workdir: The cleanup-workdir script has been removed because the script was found to be
deleting files it should not have, which lead to broken build trees. Rather than trying to delete portions of TMPD IR and
getting it wrong, it is recommended that you delete TMPD IR and have it restored from shared state (sstate) on
subsequent builds.

° Wipe-sysroot: The wipe—sys root script has been removed as it is no longer needed with recipe-specific
sysroots.

4.11.4. Changes to Functions{

The previously deprecated bb.data.getVar (), bb.data.setVar (), and related functions have been
removed in favor of d.getVar (), d.setVar (), and so forth.

You need to fix any references to these old functions.

4.11.5. BitBake Changes

The following changes took place for BitBake:

e BitBake's Graphical Dependency Explorer UI Replaced: BitBake's graphical dependency explorer UI depexp was
replaced by taskexp ("Task Explorer"), which provides a graphical way of exploring the task—-depends.dot
file. The data presented by Task Explorer is much more accurate than the data that was presented by depexp. Being
able to visualize the data is an often requested feature as standard * . dOt file viewers cannot usual cope with the size
of the task—-depends . dot file.

o BitBake "-g" Output Changes: The package—-depends.dot and pn—depends . dot files as previously
generated using the bitbake -g command have been removed. A recipe-depends.dot file is now
generated as a collapsed version of task—-depends .dot instead.

The reason for this change is because package—depends.dot and pn—-depends . dot largely date back
to a time before task-based execution and do not take into account task-level dependencies between recipes, which could
be misleading.

e Mirror Variable Splitting Changes: Mirror variables including MIRRORS, PREMIRRORS, and
SSTATE MIRRORS can now separate values entirely with spaces. Consequently, you no longer need "\\n". BitBake
looks for pa_irs of values, which simplifies usage. There should be no change required to existing mirror variable values
themselves.

e The Subversion (SVN) Fetcher Uses an "ssh" Parameter and Not an "rsh"” Parameter: The SVN fetcher now
takes an "ssh" parameter instead of an "rsh" parameter. This new optional parameter is used when the "protocol"
parameter is set to "svn+ssh". You can only use the new parameter to specify the SSh program used by SVN. The SVN
fetcher passes the new parameter through the SVN SSH environment variable during the do_ fetch task.

See the "Subversion (SVN)_Fetcher (svn://)" section in the BitBake User Manual for additional information.

o BB SETSCENE VERIFY FUNCTIONand BB SETSCENE VERIFY FUNCTIONZ2 Removed:
Bec;use the mechaﬁsm they we?e part of is no longer ne;essary with reche-specific s_ysroots, the
BB SETSCENE VERIFY FUNCTION and BB SETSCENE VERIFY FUNCTION?2 variables have
been removed. h n B o n

4.11.6. Absolute Symbolic Links{

Absolute symbolic links (symlinks) within staged files are no longer permitted and now trigger an error. Any explicit creation
of symlinks can use the 1 nr script, which is a replacement for I1n -r.

If the build scripts in the software that the recipe is building are creating a number of absolute symlinks that need to be
corrected, you can inherit relativeisyml inks within the recipe to turn those absolute symlinks into relative
symlinks.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

45/235

http://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html#svn-fetcher

3/4/2020 Yocto Project Reference Manual

4.11.7. GPLv2 Versions of GPLv3 Recipes Moved]

Older GPLv2 versions of GPLv3 recipes have moved to a separate meta-gplv?2 layer.

If you use INCOMPATTIBLE LICENSE to exclude GPLv3 or set PREFERRED VERSTON to substitute a GPLv2
version of a GPLv3 recipe, then you must add the meta—gplwv2 layer to your configuration.

Note

You can find meta—-gplv2 layer in the OpenEmbedded layer index at
https://layers.openembedded.org/layerindex/branch/master/layer/meta-gplv2/.

These relocated GPLv2 recipes do not receive the same level of maintenance as other core recipes. The recipes do not get
security fixes and upstream no longer maintains them. In fact, the upstream community is actively hostile towards people
that use the old versions of the recipes. Moving these recipes into a separate layer both makes the different needs of the
recipes clearer and clearly identifies the number of these recipes.

Note

The long-term solution might be to move to BSD-licensed replacements of the GPLv3 components
for those that need to exclude GPLv3-licensed components from the target system. This solution
will be investigated for future Yocto Project releases.

4.11.8. Package Management Changes

The following package management changes took place:

e Smart package manager is replaced by DNF package manager. Smart has become unmaintained upstream, is not ported
to Python 3.x. Consequently, Smart needed to be replaced. DNF is the only feasible candidate.

The change in functionality is that the on-target runtime package management from remote package feeds is now done
with a different tool that has a different set of command-line options. If you have scripts that call the tool directly, or use
its API, they need to be fixed.

For more information, see the DNF Documentation.
e Rpm 5.x is replaced with Rpm 4.x. This is done for two major reasons:

o DNF is API-incompatible with Rpm 5.x and porting it and maintaining the port is non-trivial.

o Rpm 5.x itself has limited maintenance upstream, and the Yocto Project is one of the very few remaining users.
e Berkeley DB 6.x is removed and Berkeley DB 5.x becomes the default:

o Version 6.x of Berkeley DB has largely been rejected by the open source community due to its AGPLv3 license. As a
result, most mainstream open source projects that require DB are still developed and tested with DB 5.x.

o In OE-core, the only thing that was requiring DB 6.x was Rpm 5.x. Thus, no reason exists to continue carrying DB 6.x
in OE-core.

e Createrepo is replaced with createrepo c.

createrepoic is the current incarnation of the tool that generates remote repository metadata. It is written in C
as compared to createrepo, which is written in Python. createrepo_c is faster and is maintained.

e Architecture-independent RPM packages are "noarch" instead of "all".

This change was made because too many places in DNF/RPM4 stack already make that assumption. Only the filenames
and the architecture tag has changed. Nothing else has changed in OE-core system, particularly in the
allarch.bbclass class.

* Signing of remote package feeds using PACKAGE FEED STGN is not currently supported. This issue will be fully
addressed in a future Yocto Project release. See defect 11209 for more information on a solution to package feed signing
with RPM in the Yocto Project 2.3 release.

e OPKG now uses the libsolv backend for resolving package dependencies by default. This is vastly superior to OPKG's
internal ad-hoc solver that was previously used. This change does have a small impact on disk (around 500 KB) and
memory footprint.

Note

For further details on this change, see the commit message.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 46/235

https://layers.openembedded.org/layerindex/branch/master/layer/meta-gplv2/
http://dnf.readthedocs.io/en/latest/
https://bugzilla.yoctoproject.org/show_bug.cgi?id=11209
http://git.yoctoproject.org/cgit/cgit.cgi/poky/commit/?%20id=f4d4f99cfbc2396e49c1613a7d237b9e57f06f81

3/4/2020 Yocto Project Reference Manual

4.11.9. Removed Recipes]

The following recipes have been removed:

o« linux-yocto 4.8: Version 4.8 has been removed. Versions 4.1 (LTSI), 4.4 (LTS), 4.9 (LTS/LTSI) and 4.10 are
now present.

« python-smartpm: Functionally replaced by dnf.
e createrepo: Replaced by the cCreaterepo-c recipe.
¢ rpmresolve : No longer needed with the move to RPM 4 as RPM itself is used instead.

e gstreamer : Removed the GStreamer Git version recipes as they have been stale. 1 . 10 . x recipes are still
present.

« alsa-conf-base: Mergedinto alsa-conf since 1ibasound depended on both. Essentially, no way
existed to install only one of these.

o tremor: Moved to meta-multimedia. Fixed-integer Vorbis decoding is not needed by current hardware.
Thus, GStreamer's ivorbis plugin has been disabled by default eliminating the need for the Lremor recipe in OE-Core.

« gummiboot: Replaced by systemd-boot.

4.11.10. Wic Changes(

The following changes have been made to Wic:

Note

For more information on Wic, see the "Creating_Partitioned Images Using_Wic" section in the Yocto
Project Development Tasks Manual.

e Default Output Directory Changed: Wic's default output directory is now the current directory by default instead of the
unusual /var/tmp/wic.

The "-0" and "--outdir" options remain unchanged and are used to specify your preferred output directory if you do not
want to use the default directory.

e fsimage Plug-in Removed: The Wic fsimage plugin has been removed as it duplicates functionality of the rawcopy
plugin.

4.11.11. QA Changesf

The following QA checks have changed:

e unsafe-references-in-binaries: The unsafe-references-in-binaries QA check,
which was disabled by default, has now been removed. This check was intended to detect binaries in /bin that link to
libraries in /usr/11ib and have the case where the user has /UST on a separate filesystem to /.

The removed QA check was buggy. Additionally, /usr residing on a separate partition from / is now a rare
configuration. Consequently, unsafe-references-in-binaries was removed.

o file-rdeps:The file—rdeps QA check is now an error by default instead of a warning. Because it is an error
instead of a warning, you need to address missing runtime dependencies.

For additional information, see the insane class and the "Errors and Warnings" section.

4.11.12. Miscellaneous Changes|
The following miscellaneous changes have occurred:
 In this release, a number of recipes have been changed to ignore the largefile DISTRO FEATURES item,

enabling large file support unconditionally. This feature has always been enabled by default. Disabling the feature has not
been widely tested.

Note

Future releases of the Yocto Project will remove entirely the ability to disable the
largefile feature, which would make it unconditionally enabled everywhere.

e Ifthe DISTRO VERSTION value contains the value of the DATE variable, which is the default between Poky
releases, the DATE value is explicitly excluded from /etc/issue and /etc/issue.net, which is displayed
at the login prompt, in order to avoid conflicts with Multilib enabled. Regardless, the DATE value is inaccurate if the
base-files recipe is restored from shared state (sstate) rather than rebuilt.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 47/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#creating-partitioned-images-using-wic

3/4/2020

Yocto Project Reference Manual

If you need the build date recorded in /etc/1ssue* or anywhere else in your image, a better method is to define a
post-processing function to do it and have the function called from ROOTFS POSTPROCESS COMMAND. Doing
so ensures the value is always up-to-date with the created image.

Dropbear's 1nit script now disables DSA host keys by default. This change is in line with the systemd service file,
which supports RSA keys only, and with recent versions of OpenSSH, which deprecates DSA host keys.

The buildhistory class now correctly uses tabs as separators between all columns in installed-
package—-sizes.txt inorder to aid import into other tools.

The USE. LDCONF IG variable has been replaced with the "Idconfig" DISTRO FEATURES feature. Distributions
that previously set:

USE_LDCONFIG = "@"

should now instead use the following:

DISTRO_FEATURES_BACKFILL_CONSIDERED_append = " ldconfig"

The default value of COPYTLEFT LICENSE TNCLUDE now includes all versions of AGPL licenses in addition to
GPL and LGPL.

Note

The default list is not intended to be guaranteed as a complete safe list. You should seek legal
advice based on what you are distributing if you are unsure.

Kernel module packages are now suffixed with the kernel version in order to allow module packages from multiple kernel
versions to co-exist on a target system. If you wish to return to the previous naming scheme that does not include the
version suffix, use the following:

KERNEL_MODULE_PACKAGE_SUFFIX to ""

Removal of 1ibtool *. 1a files is now enabled by default. The * . 1 a files are not actually needed on Linux and
relocating them is an unnecessary burden.

If you need to preserve these . 1a files (e.g. in a custom distribution), you must change INHERTT DISTRO such
that "remove-libtool" is not included in the value.

Extensible SDKs built for GCC 5+ now refuse to install on a distribution where the host GCC version is 4.8 or 4.9. This
change resulted from the fact that the installation is known to fail due to the way the uninative shared state
(sstate) package is built. See the uninative class for additional information.

All native and nativesdk recipes now use a separate DISTRO_ FEATURES value instead of sharing the value used by
recipes for the target, in order to avoid unnecessary rebuilds.

The DISTRO FEATURES for nat ive recipes is DISTRO_FEATURES NATIVE added to an intersection
of DISTRO FEATURES and DISTRO _FEATURES FILTER NATIVE.

For nativesdk recipes, the corresponding variables are DISTRO FEATURES NATIVESDK and
DISTRO_FEATURES FILTER NATIVESDK.

The FILESDIR variable, which was previously deprecated and rarely used, has now been removed. You should change
any recipes that set FILESDIR to set FILESPATH instead.

The MULTIMACH HOST_SYS variable has been removed as it is no longer needed with recipe-specific sysroots.

4.12. Moving to the Yocto Project 2.4 Releasef|

This section provides migration information for moving to the Yocto Project 2.4 Release from the prior release.

4.12.1. Memory Resident Modef

A persistent mode is now available in BitBake's default operation, replacing its previous "memory resident mode" (i.e. 0Oe—
init-build-env-memres). Now you only need to set BB SERVER TIMEOQOUT to a timeout (in seconds)
and BitBake's server stays resident for that amount of time between invocations. The oe—init-build-env-
memres script has been removed since a separate environment setup script is no longer needed.

4.12.2. Packaging Changes]

This section provides information about packaging changes that have occurred:

« python3 changes:

o The main "python3" package now brings in all of the standard Python 3 distribution rather than a subset. This behavior
matches what is expected based on traditional Linux distributions. If you wish to install a subset of Python 3, specify

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

48/235

3/4/2020

Yocto Project Reference Manual

python—core plus one or more of the individual packages that are still produced.

o python3:Thebz2.py, lzma.py,and compression.py scripts have been moved from the
python3-misc package to the python3-compression package.

binutils: The 1ibbfd library is now packaged in a separate "libbfd" package. This packaging saves space when
certain tools (e.g. per f) are installed. In such cases, the tools only need 1 1bb fd rather than all the packages in
binutils.

util-linux Changes:

o The SU program is now packaged in a separate "util-linux-su" package, which is only built when "pam" is listed in the
DISTRO FEATURES variable. util—-11inux should not be installed unless it is needed because SU is
normally pavided through the shadow file format. The main Ut i1—-1inux package has runtime dependencies
(i.e. RDEPENDS) on the ut i1-1inux-su package when "pam" is in DISTRO FEATURES.

o The switchiroot program is now packaged in a separate "util-linux-switch-root" package for small initramfs

images that do not need the whole Ut i1 —11inux package or the busybox binary, which are both much larger than

switch root.The main util-1inux package has a recommended runtime dependency (i.e.
RRECOMMENDS)onthe util-linux—-switch-root package.

o The 1onice program is now packaged in a separate "util-linux-ionice" package. The main util-1linux
package has a recommended runtime dependency (i.e. RRECOMMENDS) onthe util-linux-ionice
package.

initscripts: The sushell program is now packaged in a separate "initscripts-sushell" package. This
packaging change allows systems to pull Sushell in when selinux is enabled. The change also eliminates
needing to pull in the entire initscripts package. The main initscripts package has a runtime
dependency (i.e. RDEPENDS) on the sushel1l package when "selinux" is in DISTRO_FEATURES.

glib-2.0:The glib-2. 0 package now has a recommended runtime dependency (i.e. RRECOMMENDS) on
the shared-mime-info package, since large portions of GIO are not useful without the MIME database. You can
remove the dependency by using the BAD RECOMMENDATTIONS variable if shared-mime-info is too
large and is not required. o

Go Standard Runtime: The Go standard runtime has been split out from the main gO recipe into a separate Jo—
runtime recipe.

4.12.3. Removed Recipes

The following recipes have been removed:

acpitests: This recipe is not maintained.

autogen—native: No longer required by Grub, oe-core, or meta-oe.

bdwgc: Nothing in OpenEmbedded-Core requires this recipe. It has moved to meta-oe.

byacc: This recipe was only needed by rpm 5.x and has moved to meta-oe.

gcc (5.4): The 5.4 series dropped the recipe in favor of 6.3 / 7.2.

gnome-common: Deprecated upstream and no longer needed.

go-bootstrap-native: Go 1.9 does its own bootstrapping so this recipe has been removed.

guile: This recipe was only needed by autogen-native and remake. The recipe is no longer needed by
either of these programs.

libclass-isa-perl: This recipe was previously needed for LSB 4, no longer needed.
libdumpvalue-perl: This recipe was previously needed for LSB 4, no longer needed.
libenv-perl: This recipe was previously needed for LSB 4, no longer needed.
libfile-checktree-perdl: This recipe was previously needed for LSB 4, no longer needed.
libil8n-collate-perl: This recipe was previously needed for LSB 4, no longer needed.

libiconv: This recipe was only needed for uc 1 ilbc, which was removed in the previous release. g1 1lbc and
mus 1 have their own implementations. meta-mingw still needs 11biconv, so it has been moved to meta—
mingw.

1ibpngl2: This recipe was previously needed for LSB. The current 1 1bpng is 1.6.x.
libpod-plainer-perdl: This recipe was previously needed for LSB 4, no longer needed.
linux-yocto (4.1): This recipe was removed in favor of 4.4, 4.9, 4.10 and 4.12.

mailx: This recipe was previously only needed for LSB compatibility, and upstream is defunct.

mesa (git version only) : The git version recipe was stale with respect to the release version.
ofono (git version only): The git version recipe was stale with respect to the release version.

portmap: This recipe is obsolete and is superseded by rpcbind.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

49/235

3/4/2020

Yocto Project Reference Manual

o python3-pygpgme: This recipe is old and unmaintained. It was previously required by dn £, which has switched
to official gpgme Python bindings.

o python-async: This recipe has been removed in favor of the Python 3 version.

« python-gitdb: This recipe has been removed in favor of the Python 3 version.

o python-gi t: This recipe was removed in favor of the Python 3 version.

o python-mako: This recipe was removed in favor of the Python 3 version.

« python-pexpect: This recipe was removed in favor of the Python 3 version.

« python-ptyprocess: This recipe was removed in favor of Python the 3 version.

. python—pycurl: Nothing is using this recipe in OpenEmbedded-Core (i.e. meta—-oe).
« python-six: This recipe was removed in favor of the Python 3 version.

« python-smmap: This recipe was removed in favor of the Python 3 version.

« remake: Using remake as the provider of virtual/make is broken. Consequently, this recipe is not needed
in OpenEmbedded-Core.

4.12.4. Kernel Device Tree Movef]

Kernel Device Tree support is now easier to enable in a kernel recipe. The Device Tree code has moved to a kernel —
devicetree class. Functionality is automatically enabled for any recipe that inherits the kernel class and sets the
KERNEL DEVICETRER variable. The previous mechanism for doing this, meta/recipes—
kernel/linux/linux-dtb.inc, is still available to avoid breakage, but triggers a deprecation warning.
Future releases of the Yocto Project will remove meta/recipes-kernel/linux/linux—-dtb.inc.Itis
advisable to remove any require statements that request meta/recipes-kernel/linux/linux-
dtb. inc from any custom kernel recipes you might have. This will avoid breakage in post 2.4 releases.

4.12.5. Package QA Changesf|
The following package QA changes took place:
e The "unsafe-references-in-scripts" QA check has been removed.

o If you refer to 3 { COREBASE } /LICENSE within LIC FILES CHKSUM you receive a warning because this
file is a description of the license for OE-Core. Use $ { COMMON LICENSE DIR} /MIT if your recipe is MIT-
licensed and you cannot use the preferred method of referring to a file within the source tree.

4.12.6. README File Changes
The following are changes to README files:

e The main Poky README file has been moved to the meta—poky layer and has been renamed README . poky.
A symlink has been created so that references to the old location work.

o The README . hardware file has been moved to meta—yocto-bsp. A symlink has been created so that
references to the old location work.

« AREADME . gemu file has been created with coverage of the gemu* machines.

4.12.7. Miscellaneous Changesf|

The following are additional changes:

e The ROOTFS PKGMANAGE BOOTSTRAP variable and any references to it have been removed. You should
remove this variable from any custom recipes.

e Themeta-yocto directory has been removed.

Note
In the Yocto Project 2.1 release meta—yocto was renamed to meta-poky and the
meta—-yocto subdirectory remained to avoid breaking existing configurations.

e Themaintainers. inc file, which tracks maintainers by listing a primary person responsible for each recipe in
OE-Core, has been moved from meta—-poky to OE-Core (i.e. from meta-—
poky/conf/distro/includetometa/conf/distro/include).

e The buildhistory class now makes a single commit per build rather than one commit per subdirectory in the
repository. This behavior assumes the commits are enabled with BUTLDHTSTORY COMMIT = "1", which is typical.
Previously, the buildhistory class made one commit per subdirectory in the repository in order to make it easier

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

50/235

3/4/2020

Yocto Project Reference Manual

to see the changes for a particular subdirectory. To view a particular change, specify that subdirectory as the last
parameter onthe git showorgit diff commands.

The x86-lbase. inc file, which is included by all x86-based machine configurations, now sets
IMAGE FSTYPES using ?= to "live" rather than appending with +=. This change makes the default easier to
override.

BitBake fires multiple "BuildStarted" events when multiconfig is enabled (one per configuration). For more information,
see the "Events" section in the BitBake User Manual.

By default, the security_flags .1inc file sets a GCCPIE variable with an option to enable Position
Independent Executables (PIE) within gCC. Enabling PIE in the GNU C Compiler (GCC), makes Return Oriented
Programming (ROP) attacks much more difficult to execute.

OE-Core now provides a bitbake—-layers plugin that implements a "create-layer" subcommand. The
implementation of this subcommand has resulted in the yocto—layer script being deprecated and will likely be
removed in the next Yocto Project release.

The vindk, vdi, and gcow2 image file types are now used in conjunction with the "wic" image type through
CONVERSION_CMD. Consequently, the equivalent image types are now wic.vmdk, wic.vdi, and
wic.gcow?2, respectively.

do image <type>[depends] hasreplaced IMAGE DEPENDS <type>.If you have your own
classes that implement custom image types, then you need to update them.

OpenSSL 1.1 has been introduced. However, the default is still 1.0.x through the PREFERRED VERSTON variable.
This preference is set is due to the remaining compatibility issues with other software. The PROVIDES variable in the
openssl 1.0 recipe now includes "openssl10" as a marker that can be used in DEPENDS within recipes that build
software that still depend on OpenSSL 1.0.

To ensure consistent behavior, BitBake's "-r" and "-R" options (i.e. prefile and postfile), which are used to read or post-
read additional configuration files from the command line, now only affect the current BitBake command. Before these
BitBake changes, these options would "stick" for future executions.

4.13. Moving to the Yocto Project 2.5 Releasef

This section provides migration information for moving to the Yocto Project 2.5 Release from the prior release.

4.13.1. Packaging Changes

This section provides information about packaging changes that have occurred:

bind-1ibs: The libraries packaged by the bind recipe are in a separate bind-11ibs package.
libfm-gtk: The 1ibfm GTK+ bindings are split into a separate 1 ibfm—gtk package.

flex-1ibf1: The flex recipe splits out libfl into a separate f1ex—11ibf1 package to avoid too many
dependencies being pulled in where only the library is needed.

grub-efi: The grub-efi configuration is split into a separate grub-bootconf recipe. However, the
dependency relationship from grub—efi is through a virtual/grub-bootconf provider making it possible to have your
own recipe provide the dependency. Alternatively, you can use a BitBake append file to bring the configuration back into
the grub-ef1i recipe.

armv7a Legacy Package Feed Support: Legacy support is removed for transitioning from armv’7/a to armv/a—
vifp-neon in package feeds, which was previously enabled by setting PKGARCHCOMPAT_ARMV7A. This
transition occurred in 2011 and active package feeds should by now be updated to the new naming.

4.13.2. Removed Recipesf

The following recipes have been removed:

gcc: The version 6.4 recipes are replaced by 7.x.

gst-player: Renamed to gst—examples as per upstream.

hostap-utils: This software package is obsolete.

latencytop: This recipe is no longer maintained upstream. The last release was in 2009.

1ibpfm4: The only file that requires this recipe is Oprofile, which has been removed.

linux—yocto: The version 4.4, 4.9, and 4.10 recipes have been removed. Versions 4.12, 4.14, and 4.15 remain.
man: This recipe has been replaced by modern man—-db

mkelfimage: This tool has been removed in the upstream coreboot project, and is no longer needed with the
removal of the ELF image type.

nativesdk-postinst-intercept: This recipe is not maintained.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

51/235

http://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html#events

3/4/2020 Yocto Project Reference Manual

e neoun: This software package is no longer maintained upstream and is no longer needed by anything in OpenEmbedded-
Core.

. oprofile: The functionality of this recipe is replaced by per f and keeping compatibility on an ongoing basis with
mus 1 is difficult.

e pax: This software package is obsolete.
o stat: This software package is not maintained upstream. coreutils provides a modern stat binary.

o zisofs-tools-native: This recipe is no longer needed because the compressed ISO image feature has been
removed.

4.13.3. Scripts and Tools Changes

The following are changes to scripts and tools:

« yocto-bsp, yocto-kernel, and yocto-layer: The yocto-bsp, yocto-kernel, and
yocto—layer scripts previously shipped with poky but not in OpenEmbedded-Core have been removed. These
scripts are not maintained and are outdated. In many cases, they are also limited in scope. The bitbake-layers
create-layer command is a direct replacement for yocto—layer. See the documentation to create a BSP
or kernel recipe in the "BSP Kernel Recipe Example" section.

« devtool finish:devtool finish now exits with an error if there are uncommitted changes or a
rebase/am in progress in the recipe's source repository. If this error occurs, there might be uncommitted changes that
will not be included in updates to the patches applied by the recipe. A -f/--force option is provided for situations that the
uncommitted changes are inconsequential and you want to proceed regardless.

« scripts/oe-setup-rpmrepo script: The functionality of SCripts/oe-setup-rpmrepo is
replaced by bitbake package-index.

. scripts/test-dependencies. sh script: The script is largely made obsolete by the recipe-specific
sysroots functionality introduced in the previous release.

4.13.4. BitBake Changesf|
The following are BitBake changes:
e The ——runall option has changed. There are two different behaviors people might want:

o Behavior A: For a given target (or set of targets) look through the task graph and run task X only if it is present and
will be built.

o Behavior B: For a given target (or set of targets) look through the task graph and run task X if any recipe in the
taskgraph has such a target, even if it is not in the original task graph.

The ——runall option now performs "Behavior B". Previously ——runall behaved like "Behavior A". A ——
runonly option has been added to retain the ability to perform "Behavior A".

e Several explicit "run this task for all recipes in the dependency tree" tasks have been removed (e.g. fetchall,
checkuriall, and the *all tasks provided by the distrodata and archiver classes). There is a
BitBake option to complete this for any arbitrary task. For example:

bitbake <target> -c fetchall

should now be replaced with:

bitbake <target> --runall=fetch

4.13.5. Python and Python 3 Changes|
The following are auto-packaging changes to Python and Python 3:

The script-managed python-*-manifest. inc files that were previously used to generate Python and Python 3
packages have been replaced with a JSON-based file that is easier to read and maintain. A new task is available for
maintainers of the Python recipes to update the JSON file when upgrading to new Python versions. You can now edit the file
directly instead of having to edit a script and run it to update the file.

One particular change to note is that the Python recipes no longer have build-time provides for their packages. This assumes
python-foo is one of the packages provided by the Python recipe. You can no longer run bitbake python-
f00 or have a DEPENDS on python—foo, but doing either of the following causes the package to work as
expected:

IMAGE_INSTALL_append = " python-foo"

or

RDEPENDS_${PN} = "python-foo"

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 52/235

http://www.yoctoproject.org/docs/3.1/bsp-guide/bsp-guide.html#bsp-kernel-recipe-example
http://www.yoctoproject.org/docs/3.1/ref-manual/ref-manual.html#var-DEPENDS

3/4/2020

Yocto Project Reference Manual

The earlier build-time provides behavior was a quirk of the way the Python manifest file was created. For more information
on this change please see this commit.

4.13.6. Miscellaneous Changesf|

The following are additional changes:

The kernel class supports building packages for multiple kernels. If your kernel recipe or . bbappend file
mentions packaging at all, you should replace references to the kernel in package names with

S {KERNEL PACKAGE NAME }. For example, if you disable automatic installation of the kernel image using
RDEPENDS kernel-base = "" you can avoid warnings using

RDE PENDS:$ {KERNEL PACKAGE NAME}-base = "" instead.

The buildhistory class commits changes to the repository by default so you no longer need to set
BUILDHISTORY COMMIT = "1".If you want to disable commits you need to set
BUILDHISTORY COMMIT = "0" in your configuration.

The beaglebone reference machine has been renamed to beaglebone-yocto. The beaglebone-
yoOCto BSP is a reference implementation using only mainline components available in OpenEmbedded-Core and
meta-yocto-bsp, whereas Texas Instruments maintains a full-featured BSP in the meta—ti layer. This
rename avoids the previous name clash that existed between the two BSPs.

The update—-alternatives class no longer works with SysV 1nit scripts because this usage has been
problematic. Also, the sysk1ogd recipe no longer uses uUpdate-alternatives because it is incompatible
with other implementations.

By default, the cmake class uses ninja instead of make for building. This improves build performance. If a recipe
is broken with ninja, then the recipe can set OECMAKE GENERATOR = "Unix Makefiles" to
change back to make.

The previously deprecated base_* functions have been removed in favor of their replacements inmeta/lib/oe
and bitbake/1lib/bb. These are typically used from recipes and classes. Any references to the old functions must
be updated. The following table shows the removed functions and their replacements:

Removed Replacement

base_path_join() oe.path.join()
base_path_relative() oe.path.relative()
base_path_out() oe.path.format_display()
base_read_file() oe.utils.read_file()
base_ifelse() oe.utils.ifelse()
base_conditional() oe.utils.conditional()
base_less_or_equal() oe.utils.less_or_equal()
base_version_less_or_equal() oe.utils.version_less_or_equal()
base_contains() bb.utils.contains()
base_both_contain() oe.utils.both_contain()
base_prune_suffix() oe.utils.prune_suffix()
oe_filter() oe.utils.str_filter()
oe_filter_out() oe.utils.str_filter_out() (or use the _remove operator).

Using exit 1 to explicitly defer a postinstall script until first boot is now deprecated since it is not an obvious
mechanism and can mask actual errors. If you want to explicitly defer a postinstall to first boot on the target rather than
at root £s creation time, use pkg_postinst ontarget () orcall postinst-intercepts
defer to first boot frompkg postinst (). Any failure of a pkg postinst () script
(including exit 1) will trigger a warning during do_rootfs. o

For more information, see the "Post-Installation Scripts" section in the Yocto Project Development Tasks Manual.

The e 1 f image type has been removed. This image type was removed because the mke 1 fimage tool that was
required to create it is no longer provided by coreboot upstream and required updating every time binutils
updated.

Support for .iso image compression (previously enabled through COMPRESSISO = "1") has been removed. The
userspace tools (z1sofs—-tools) are unmaintained and squashfs provides better performance and
compression. In order to build a live image with squashfs+1z4 compression enabled you should now set

LIVE ROOTFS TYPE = "squashfs-1z4" andensurethat liveisin IMAGE FSTYPES.

Recipes with an unconditional dependency on 1 ibpam are only buildable with pam in DISTRO_FEATURES. If

the dependency is truly optional then it is recommended that the dependency be conditional upon pam being in
DISTRO_FEATURES.

For EFI-based machines, the bootloader (Jrulbb—efi by default) is installed into the image at /boot. Wic can be used
to split the bootloader into separate boot and rootfs partitions if necessary.

Patches whose context does not match exactly (i.e. where patch reports "fuzz" when applying) will generate a warning.
For an example of this see this commit.

Layers are expected to set LAYERSERIES COMPAT layername to match the version(s) of OpenEmbedded-
Core they are compatible with. This is specified_as codenames using spaces to separate multiple values (e.g. "rocko
sumo"). If a layer does not set LAYERSERIES COMPAT layername, a warning will is shown. If a layer sets
a value that does not include the current version (";umo" for the 2.5 release), then an error will be produced.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

53/235

http://git.yoctoproject.org/cgit/cgit.cgi/poky/commit/?id=8d94b9db221d1def42f091b991903faa2d1651ce
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#new-recipe-post-installation-scripts
http://git.yoctoproject.org/cgit/cgit.cgi/poky/commit/?id=cc97bc08125b63821ce3f616771830f77c456f57

3/4/2020

Yocto Project Reference Manual

e The TZ environment variable is set to "UTC" within the build environment in order to fix reproducibility problems in some
recipes.

4.14. Moving to the Yocto Project 2.6 Releasef|

This section provides migration information for moving to the Yocto Project 2.6 Release from the prior release.

4.14.1. GCC 8.2 is Now Used by Default{|

The GNU Compiler Collection version 8.2 is now used by default for compilation. For more information on what has changed
in the GCC 8.x release, see https://gcc.gnu.org/gcc-8/changes.html.

If you still need to compile with version 7.x, GCC 7.3 is also provided. You can select this version by setting the and can be
selected by setting the GCCVERS TON variable to "7.%" in your configuration.

4.14.2. Removed Recipes

The following recipes have been removed:

beecrypt: No longer needed since moving to RPM 4.

bigregsproto: Rreplaced by xOrgproto.

calibrateproto: Removed in favor of Xxinput.

compositeproto: Replaced by xOrgproto.

damageproto: Replaced by XOrgproto.

dmxproto: Replaced by XOrgproto.

dri2proto: Replaced by XOrgproto.

dri3proto: Replaced by XOrgproto.

eee-acpi-scripts: Became obsolete.

fixesproto: Replaced by xXOrgproto.

fontsproto: Replaced by xOrgproto.

fstests: Became obsolete.

gccmakedep: No longer used.

glproto: Replaced by xOrgproto.

gnome-desktop3: No longer needed. This recipe has moved to meta—-oe.
icon—naming—utils.- No longer used since the Sato theme was removed in 2016.
inputproto: Replaced by xOrgproto.

kbproto: Replaced by XxOrgproto.

libusb—compat: Became obsolete.

libuser: Became obsolete.

libnfsidmap: No longer an external requirement since nfs-utils 2.2.1. libnfsidmap is now :

libxcalibrate: no longer needed with Xinput

mktemp: Became obsolete. The mktemp command is provided by both busybox and coreutils.
ossp—uuid.- Is not being maintained and has mostly been replaced by uuid.h in util-1linux.
pax-utils.- No longer needed. Previous QA tests that did use this recipe are now done at build time.
pcmciautils.- Became obsolete.

pixz: No longer needed. XZ now supports multi-threaded compression.

presentproto: Replaced by xOrgproto.

randrproto: Replaced by XOrgproto.

recordproto: Replaced by XOrgproto.

renderproto: Replaced by XOrgproto.

resourceproto.- Replaced by XOrgproto.

scrnsaverproto.- Replaced by XOrgproto.

trace-cmd: Became obsolete. perf replaced this recipe's functionally.

videoproto: Replaced by xOrgproto.

wireless—-tools: Became obsolete. Superseded by 1W.

xcmiscproto: Replaced by XOrgproto.

xextproto: Replaced by XOrgproto.

xf86dgaproto: Replaced by XOrgproto.

x£f86driproto: Replaced by XOrgproto.

xf86miscproto: Replaced by XOrgproto.

xf86—video-omapfb: Became obsolete. Use kernel modesetting driver instead.
x£f86-video—-omap: Became obsolete. Use kernel modesetting driver instead.
xf86vidmodeproto: Replaced by XOrgproto.

xineramaproto.- Replaced by XOrgproto.

Xproto: Replaced by XOrgproto.

yasm: No longer needed since previous usages are now satisfied by nast.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

54/235

https://gcc.gnu.org/gcc-8/changes.html

3/4/2020 Yocto Project Reference Manual

4.14.3. Packaging Changes]

The following packaging changes have been made:

« cmake: cmake.m4 and toolchain files have been moved to the main package.

o iptables: The iptables modules have been split into separate packages.

e alsa-1ib: 1ibasound is now in the main alsa—11b package instead of 1 1basound.

e glibc: 1ibnss—db is now in its own package along with a /var/db/makedbs . sh script to update
databases.

e python and python3: The main package has been removed from the recipe. You must install specific packages or
python-modules/python3-modules for everything.

o systemtap: Moved systemtap—-exporter into its own package.

4.14.4. XOrg Protocol dependencies(

The "*proto" upstream repositories have been combined into one "xorgproto" repository. Thus, the corresponding recipes
have also been combined into a single XOrgpIr Ot O recipe. Any recipes that depend upon the older *proto recipes
need to be changed to depend on the newer XOrgproOto recipe instead.

For names of recipes removed because of this repository change, see the Removed Recipes section.

4.14.5. distutils and distutils3 Now Prevent Fetching Dependencies During the
do_configure Task(
Previously, it was possible for Python recipes that inherited the distutils and distutils3 classes to fetch code

during the do_configure task to satisfy dependencies mentioned in setup . pV if those dependencies were not
provided in the sysroot (i.e. recipes providing the dependencies were missing from DEPENDS).

Note

This change affects classes beyond just the two mentioned (i.e. distutils and
distutils3). Any recipe that inherits distutils™ classes are affected. For example,
the setuptools and setuptools3 recipes are affected since they inherit the
distutils* classes.

Fetching these types of dependencies that are not provided in the sysroot negatively affects the ability to reproduce builds.
This type of fetching is now explicitly disabled. Consequently, any missing dependencies in Python recipes that use these
classes now result in an error during the doiconfigure task.

4.14.6. linux-yocto Configuration Audit Issues Now Correctly Reported{

Due to a bug, the kernel configuration audit functionality was not writing out any resulting warnings during the build. This
issue is now corrected. You might notice these warnings now if you have a custom kernel configuration with a 1 inux-—
yoOCto style kernel recipe.

4.14.7. Image/Kernel Artifact Naming Changes

The following changes have been made:

e Name variables (e.g. IMAGE NAME) use a new IMAGE VERSTION SUFFTIX variable instead of DATETTME.
Using ITMAGE VERSTION SUFFIX allows easier and more direct changes.

The IMAGE VERSION SUFFIX variableis setinthe bitbake.conf configuration file as follows:

IMAGE_VERSION_SUFFIX = "-${DATETIME}"

e Several variables have changed names for consistency:

0ld variable Name New Variable Name
KERNEL_IMAGE_BASE_NAME KERNEL IMAGE_ NAME
KERNEL_IMAGE_SYMLINK_NAME KERNEL IMAGE LINK NAME
MODULE_TARBALL_BASE_NAME MODULE_TARBALL_NAME
MODULE_TARBALL_SYMLINK_NAME MODULE TARBALL LINK NAME
INITRAMFS_BASE_NAME INITRAMFS NAME

o The MODULE TMAGE BASE NAME variable has been removed. The module tarball name is now controlled
directly with the MODULE,_TARBATLL NAME variable.

e The KERNEL DTB_NAME and KERNEL DTB LINK NAME variables have been introduced to control kernel
Device Tree Binary (DTB) artifact names instead of mangling KERNEL IMAGE * variables.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 55/235

3/4/2020

Yocto Project Reference Manual

e The KERNEL FTIT NAME and KERNEL FT TiLINKiNAMEivariables have been introduced to specify the
name of flattened image tree (FIT) kernel images similar to other deployed artifacts.

e The MODULE TARBALL NAME and MODULE TARBATLIL LINK NAME variable values no longer include
the "module-" prefix or ".tgz" suffix. These parts are now hardcoded so that the values are consistent with other artifact
naming variables.

e Added the INITRAMFS_LINK_NAME variable so that the symlink can be controlled similarly to other artifact
types.

o INT TRAMFS_NAME now uses "${PKGE}-${PKGV}-${PKGR}-${MACHINE}${IMAGE_VERSION_SUFFIX}" instead of
"${PV}-${PR}-${MACHINE}-${DATETIME}", which makes it consistent with other variables.

4.14.8. SERIAL CONSOLE Deprecated(

The SERTAT, CONSOLE variable has been functionally replaced by the SERTATL CONSOLES variable for some
time. With the Yocto Project 2.6 release, SERTIAL CONSOLE has been officially deprecated.

SERTAL CONSOLE will continue to work as before for the 2.6 release. However, for the sake of future compatibility, it
is recommended that you replace all instances of SERTAL CONSOLE with SERTAL CONSOLES.

Note
The only difference in usage is that SERTAL CONSOLES expects entries to be separated
using semicolons as compared to SERTIAL CONSOLE, which expects spaces.

4.14.9. Configure Script Reports Unknown Options as Errorsf

If the configure script reports an unknown option, this now triggers a QA error instead of a warning. Any recipes that
previously got away with specifying such unknown options now need to be fixed.

4.14.10. Override Changesf|

The following changes have occurred:

e The virtclass-nativeand virtclass-nativesdk Overrides Have Been Removed: The
virtclass—-native and virtclass—-nativesdk overrides have been deprecated since 2012 in favor
of class-native and class—-nativesdk, respectively. Both virtclass—-native and
virtclass—-nativesdk are now dropped.

Note

The virtclass-multilib- overrides for multilib are still valid.

+« The forcevariable Override Now Has a Higher Priority Than 1ibc Overrides: The
forcevariable override is documented to be the highest priority override. However, due to a long-standing quirk
of how OVERRTIDES is set, the 1 1bcC overrides (e.g. 11bc—glibc, 1ibc-musl, and so forth) erroneously
had a higher priority. This issue is now corrected.

It is likely this change will not cause any problems. However, it is possible with some unusual configurations that you
might see a change in behavior if you were relying on the previous behavior. Be sure to check how you use
forcevariable and 1ilbc—* overrides in your custom layers and configuration files to ensure they make sense.

o The build-${BUILD OS} Override Has Been Removed: The build-${BUILD OS}, which is typically
build-1inux, override has been removed because building on a host operating system other than a recent version
of Linux is neither supported nor recommended. Dropping the override avoids giving the impression that other host
operating systems might be supported.

e The "_remove" operator now preserves whitespace. Consequently, when specifying list items to remove, be aware that
leading and trailing whitespace resulting from the removal is retained.

See the "Removal (Override Style Syntax)" section in the BitBake User Manual for a detailed example.

4.14.11. systemd Configuration is Now Split Into systemd-conff

The configuration for the sy stemd recipe has been moved into a system—conf recipe. Moving this configuration to
a separate recipe avoids the Sy S temd recipe from becoming machine-specific for cases where machine-specific
configurations need to be applied (e.g. for gemu™* machines).

Currently, the new recipe packages the following files:

${sysconfdir}/machine-id
${sysconfdir}/systemd/coredump.conf

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 56/235

http://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html#removing-override-style-syntax

3/4/2020

Yocto Project Reference Manual

${sysconfdir}/systemd/journald.conf
${sysconfdir}/systemd/logind.conf
${sysconfdir}/systemd/system.conf
${sysconfdir}/systemd/user.conf

If you previously used bbappend files to append the Sy stemd recipe to change any of the listed files, you must do so for
the systemd-conf recipe instead.

4.14.12. Automatic Testing Changes]
This section provides information about automatic testing changes:
. TEST_IMAGE Variable Removed: Prior to this release, you set the TEST IMAGE variable to "1" to enable

automatic testing for successfully built images. The TEST TMAGE variable nglonger exists and has been replaced by
the TESTIMAGE AUTO variable.

o Inheriting the testimage and testsdk Classes: Best practices now dictate that you use the
IMAGE_CLAS SES variable rather than the INHERT T variable when you inherit the testimage and
testsdk classes used for automatic testing.

4.14.13. OpenSSL Changesf

OpenSSL has been upgraded from 1.0 to 1.1. By default, this upgrade could cause problems for recipes that have both
versions in their dependency chains. The problem is that both versions cannot be installed together at build time.

Note

It is possible to have both versions of the library at runtime.

4.14.14. BitBake Changesf|

The server logfile bitbake-cookerdaemon. 10og is now always placed in the Build Directory instead of the
current directory.

4.14.15. Security Changesf|

The Poky distribution now uses security compiler flags by default. Inclusion of these flags could cause new failures due to
stricter checking for various potential security issues in code.

4.14.16. Post Installation Changesf|

You must explicitly mark post installs to defer to the target. If you want to explicitly defer a postinstall to first boot on the
target rather than at rootfs creation time, use pkg_postinst ontarget () orcall postinst-
intercepts defer to first boot frompkg postinst (). Any failure of a

pkg postinst () script (including exit 1) triggers an error during the do_rootfs task.

For more information on post-installation behavior, see the "Post-Installation Scripts" section in the Yocto Project
Development Tasks Manual.

4.14.17. Python 3 Profile-Guided Optimization]

The python3 recipe now enables profile-guided optimization. Using this optimization requires a little extra build time in
exchange for improved performance on the target at runtime. Additionally, the optimization is only enabled if the current
MACHINE has support for user-mode emulation in QEMU (i.e. "qemu-usermode” is in MACHTINE FEATURES, which
it is by default).

If you wish to disable Python profile-guided optimization regardless of the value of MACHINE FEATURES, then ensure
that PACKAGECONFIG for the python3 recipe does not contain "pgo". You could accomplish the latter using the
following at the configuration level:

PACKAGECONFIG_remove_pn-python3 = "pgo"

Alternatively, you can set PACKAGECONF IG using an append file for the python3 recipe.

4.14.18. Miscellaneous Changes]

The following miscellaneous changes occurred:

e Default to using the Thumb-2 instruction set for armv7a and above. If you have any custom recipes that build software
that needs to be built with the ARM instruction set, change the recipe to set the instruction set as follows:

ARM_INSTRUCTION_SET = "arm"

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

57/235

https://www.openssl.org/
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#new-recipe-post-installation-scripts

3/4/2020

Yocto Project Reference Manual

e run-postinsts nolongeruses /etc/*-postinsts for dpkg/opkyg in favor of built-in postinst
support. RPM behavior remains unchanged.

e The NOISO and NOHDD variables are no longer used. You now control building * . 150 and * . hddimg image
types directly by using the IMAGE FSTYPKS variable.

e The scripts/contrib/mkefidisk. sh has been removed in favor of Wic.

¢ kernel-modules has been removed from RRECOMMENDS for gemumips and gemumips 64 machines.

Removal also impacts the x86—base. inc file.

Note

genericx86 and genericx86-64 retain kernel-modules as part of the
RRECOMMENDS variable setting.

e The LGPLv2 WHITELIST GPL-3.0 variable has been removed. If you are setting this variable in your
configuration, set or append it to the WHITELIST_GPL—3 . O variable instead.

o S{ASNEEDED} is now included in the TARGET LDFLAGS variable directly. The remaining definitions from
meta/conf/distro/include/as-needed. inc have been moved to corresponding recipes.

e Support for DSA host keys has been dropped from the OpenSSH recipes. If you are still using DSA keys, you must switch
over to a more secure algorithm as recommended by OpenSSH upstream.

e The dhcp recipe now uses the dhcpd6 . conf configuration file in dhcpd6 . service for IPv6 DHCP rather
than re-using dhcpd. conf, which is now reserved for IPv4.

4.15. Moving to the Yocto Project 2.7 Releasef|

This section provides migration information for moving to the Yocto Project 2.7 Release from the prior release.

4.15.1. BitBake Changesf

The following changes have been made to BitBake:

o BitBake now checks anonymous Python functions and pure Python functions (e.g. def funcname:)in the
metadata for tab indentation. If found, BitBake produces a warning.

e Bitbake now checks BBETLE COLLECTTIONS for duplicate entries and triggers an error if any are found.

4.15.2. Eclipse™ Support Removed]|

Support for the Eclipse IDE has been removed. Support continues for those releases prior to 2.7 that did include support.
The 2.7 release does not include the Eclipse Yocto plugin.

4.15.3. gemu-native Splits the System and User-Mode Parts{|

The system and user-mode parts of qemu—native are now split. qemu—native provides the user-mode
components and gemu—-system—-nat ive provides the system components. If you have recipes that depend on
QEMU's system emulation functionality at build time, they should now depend upon gemu-system-native instead
of gemu-native.

4.15.4. The upstream-tracking. inc File Has Been Removedf

The previously deprecated upstream-tracking. inc file is now removed. Any UPSTREAM TRACKING*
variables are now set in the corresponding recipes instead.

Remove any references you have to the Upstream—-tracking. inc file in your configuration.

4.15.5. The DISTRO_FEATURES_LIBC Variable Has Been Removed{

The DISTRO FEATURES LIBC variable is no longer used. The ability to configure glibc using kconfig has been
removed for quite some time making the 1 1oc—* features set no longer effective.

Remove any references you have to DTISTRO FEATURES LIBC in your own layers.

4.15.6. License Value Corrections

The following corrections have been made to the LICENSE values set by recipes:

socat: Corrected LICENSE to be "GPLv2" rather than
"GPLv2+".

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

58/235

3/4/2020 Yocto Project Reference Manual
Libgfortran: Set license to "GPL-3.0-with-GCC-exception".

elfutils: Removed "Elfutils-Exception" and set to "GPLv2" for shared
libraries

4.15.7. Packaging Changes

This section provides information about packaging changes.
e bind: The nsupdate binary has been moved to the bind-utils package.

o Debug split: The default debug split has been changed to create separate source packages (i.e. package_name—dbg and
package_name=ST C). If you are currently using dbg—pkgs in IMAGE _FEATURES to bring in debug symbols and
you still need the sources, you must now also add src-pkgs to IMAGE FEATURES. Source packages remain in
the target portion of the SDK by default, unless you have set your own value for SDKIMAGE FEATURES that does
not include src—pkgs. a

e Mountallusingutil-linux: /etc/default/mountall has moved into the -mount sub-package.

o Splitting binaries using util—-1inux: util-1inux now splits each binary into its own package for fine-grained
control. The main ut11—-11inux package pulls in the individual binary packages using the RRECOMMENDS and
RDEPENDS variables. As a result, existing images should not see any changes assuming
NO_RECOMMENDATTIONS is not set.

« netbase/base-files: /etc/hosts has moved from netbase tobase-files.

« tzdata: The main package has been converted to an empty meta package that pulls in all t zdata packages by
default.

e« 1rzsz: This package has been removed from packagegroup-self-hosted and packagegroup-
core—tools—testapps. The X/Y/ZModem support is less likely to be needed on modern systems. If you are
relying on these packagegroups to include the 1 ¥z Sz package in your image, you now need to explicitly add the
package.

4.15.8. Removed Recipes

The following recipes have been removed:
gcc: Drop version 7.3 recipes. Version 8.3 now remains.
Linux-yocto: Drop versions 4.14 and 4.18 recipes. Versions 4.19 and 5.0 remain.
go: Drop version 1.9 recipes. Versions 1.11 and 1.12 remain.
xvideo-tests: Became obsolete.
Libart-Llgpl: Became obsolete.
gtk-icon-utils-native: These tools are now provided by gtk+3-native
gcc-cross-initial: No longer needed. gcc-cross/gcc-crosssdk is now used instead.
gcc-crosssdk-initial: No longer needed. gcc-cross/gcc-crosssdk is now used instead.

glibc-initial: Removed because the benefits of having it for site_config are
currently outweighed by the cost of building the recipe.

4.15.9. Removed Classes]

The following classes have been removed:
distutils-tools: This class was never used.
bugzilla.bbclass: Became obsolete.

distrodata: This functionally has been replaced by a more modern
tinfoil-based implementation.

4.15.10. Miscellaneous Changes]

The following miscellaneous changes occurred:
e The distro subdirectory of the Poky repository has been removed from the top-level Scripts directory.

e Perl now builds for the target using per1—Cross for better maintainability and improved build performance. This
change should not present any problems unless you have heavily customized your Perl recipe.

¢ arm-—-tunes: Removed the "-march" option if mcpu is already added.
« update-alternatives: Convert file renames to PACKAGE PREPROCESS FUNCS

« base/pixbufcache: Obsolete sstatecompletions code has been removed.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 59/235

http://arsv.github.io/perl-cross/

3/4/2020

Yocto Project Reference Manual

e native class: RDEPENDS handling has been enabled.

e inetutils: This recipe has rsh disabled.

4.16. Moving to the Yocto Project 3.0 Releasef|

This section provides migration information for moving to the Yocto Project 3.0 Release from the prior release.

4.16.1. Init System Selection(

Changing the init system manager previously required setting a number of different variables. You can now change the
manager by setting the INIT MANAGER variable and the corresponding include files (i.e.
conf/distro/include/init-manager—*.conf). Include files are provided for four values: "none",
"sysvinit", "systemd", and "mdev-busybox". The default value, "none", for INIT MANAGER should allow your current
settings to continue working. However, it is advisable to explicitly set INT T_MANAGER.

4.16.2. LSB Support Removed]

Linux Standard Base (LSB) as a standard is not current, and is not well suited for embedded applications. Support can be
continued in a separate layer if needed. However, presently LSB support has been removed from the core.

As a result of this change, the poky—1sb derivative distribution configuration that was also used for testing alternative
configurations has been replaced with a poky—altcfqg distribution that has LSB parts removed.

4.16.3. Removed Recipesf

The following recipes have been removed.

¢ core-image-1lsb-dev: Part of removed LSB support.

e core-image-1sb: Part of removed LSB support.

¢ core-image-1lsb-sdk: Part of removed LSB support.

e cve-check-tool: Functionally replaced by the cve—update—db recipe and cve—-check class.

¢ eglinfo: No longer maintained. eglinfo from mesa-demos is an adequate and maintained alternative.
e gcc—8. 3: Version 8.3 removed. Replaced by 9.2.

¢ gnome-themes-standard: Only needed by gtk+ 2.x, which has been removed.

. gtk+: GTK+ 2 is obsolete and has been replaced by gtk+3.

o irda-utils: Has become obsolete. IrDA support has been removed from the Linux kernel in version 4.17 and later.

e libnewt-python: 1ibnewt Python support merged into main 1ibnewt recipe.
e libsdl: Replaced by newer 1ibsdl?2.

e libx11-diet: Became obsolete.

¢ 1libxx86dga: Removed obsolete client library.

o libxx86misc: Removed. Library is redundant.

° linux—yocto: Version 5.0 removed, which is now redundant (5.2 / 4.19 present).

e lsbinitscripts: Partof removed LSB support.

e 1sb: Part of removed LSB support.

e lsbtest: Part of removed LSB support.

e openssl10: Replaced by newer openss1 version 1.1.

¢ packagegroup-core-1sb: Part of removed LSB support.

¢ python—-nose: Removed the Python 2.x version of the recipe.

¢ python-numpy: Removed the Python 2.x version of the recipe.

¢ python-scons: Removed the Python 2.x version of the recipe.

o source-highlight: No longer needed.

e stress: Replaced by stress—ng.

« vulkan: splitinto vulkan-loader, vulkan-headers, and vulkan-tools.

o« weston-conf: Functionality moved to weston-init.

4.16.4. Packaging Changes

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

60/235

3/4/2020

Yocto Project Reference Manual

The following packaging changes have occurred.

The Epiphany, browser has been dropped from packagegroup-self-hosted as it has not been needed
inside build-appliance-image for quite some time and was causing resource problems.

libcap-ng Python support has been moved to a separate 1 1bcap-ng-python recipe to streamline the build
process when the Python bindings are not needed.

1ibdrm now packages the file amdgpu . 1ds into a separate 1 ibdrm-amdgpu package.

python3: The runpy module is now in the python3—-core package as it is required to support the common
"python3 -m" command usage.

distcc now provides separate distcc—-client and distcc—server packages as typically one or the
other are needed, rather than both.

python*-setuptools recipes now separately package the pkg resources module ina python-
pkg-resources/python3-pkg-resources package as the module is useful independent of the rest of
the setuptools package. The main python-setuptools/python3-setuptools package depends on
this new package so you should only need to update dependencies unless you want to take advantage of the increased
granularity.

4.16.5. CVE Checkingf

cve—-check-tool has been functionally replaced by a new cve—-update—db recipe and functionality built into
the cve—check class. The result uses NVD JSON data feeds rather than the deprecated XML feeds that cve—
check-tool was using, supports CVSSv3 scoring, and makes other improvements.

Additionally, the CVE. CHECK CVE WHITELIST variable has been replaced by CVE CHECK WHITELTIST.

4.16.6. Bitbake Changesf|

The following BitBake changes have occurred.

addtask statements now properly validate dependent tasks. Previously, an invalid task was silently ignored. With this
change, the invalid task generates a warning.

Other invalid addtask and deltask usages now trigger these warnings: "multiple target tasks arguments with
addtask / deltask", and "multiple before/after clauses".

The "multiconfig" prefix is now shortened to "mc".
future release.

multiconfig" will continue to work, however it may be removed in a

The bitbake -g command no longer generates a recipe-depends . dot file as the contents (i.e. a
reprocessed version of task—-depends.dot) were confusing.

Thebb.build.FuncFailed exception, previously raised by bb.build.exec func () when certain
other exceptions have occurred, has been removed. The real underlying exceptions will be raised instead. If you have
calls to bb.build.exec func () in custom classes or tinfoil-using scripts, any references to
bb.build.FuncFailed should be cleaned up.

Additionally, the bb.build.exec func () no longer accepts the "pythonexception" parameter. The function
now always raises exceptions. Remove this argument in any calls to bb.build.exec func () in custom classes
or scripts.

The BB_SETSCENE _VERT FY_FUNCTIONZ is no longer used. In the unlikely event that you have any
references to it, they should be removed.

The RunQueueExecuteScenequeue and RunQueuekExecuteTasks events have been removed
since setscene tasks are now executed as part of the normal runqueue. Any event handling code in custom classes or
scripts that handles these two events need to be updated.

The arguments passed to functions used with BB_HASHCHECK FUNCTTION have changed. If you are using your
own custom hash check function, see http://git.yoctoproject.org/cgit/cgit.cgi/poky/commit/?
id=40a5e193c4ba45c928fccd899415ea56b5417725 for details.

Task specifications in BB_TASKDEPDATA and class implementations used in signature generator classes now use "
<fn>:<task>" everywhere rather than the "." delimiter that was being used in some places. This change makes it
consistent with all areas in the code. Custom signature generator classes and code that reads BB. TASKDEPDATA
need to be updated to use ":' as a separator rather than '.".

4.16.7. Sanity Checks]

The following sanity check changes occurred.

SRC_URT is now checked for usage of two problematic items:

o "${PN}" prefix/suffix use - Warnings always appear if ${PN} is used. You must fix the issue regardless of whether
multiconfig or anything else that would cause prefixing/suffixing to happen.

o Github archive tarballs - these are not guaranteed to be stable. Consequently, it is likely that the tarballs will be
refreshed and thus the SRC_URI checksums will fail to apply. It is recommended that you fetch either an official

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 61/235

https://en.wikipedia.org/wiki/GNOME_Web
http://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html#var-bb-BB_SETSCENE_VERIFY_FUNCTION2
http://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html#var-bb-BB_HASHCHECK_FUNCTION
http://git.yoctoproject.org/cgit/cgit.cgi/poky/commit/?id=40a5e193c4ba45c928fccd899415ea56b5417725

3/4/2020 Yocto Project Reference Manual

release tarball or a specific revision from the actual Git repository instead.

Either one of these items now trigger a warning by default. If you wish to disable this check, remove src—uri-bad
from WARN_QA.

e The file-rdeps runtime dependency check no longer expands RDEPENDS recursively as there is no mechanism
to ensure they can be fully computed, and thus races sometimes result in errors either showing up or not. Thus, you
might now see errors for missing runtime dependencies that were previously satisfied recursively. Here is an example:
package A contains a shell script starting with # ! /bin/bash but has no dependency on bash. However, package A
depends on package B, which does depend on bash. You need to add the missing dependency or dependencies to resolve
the warning.

e Setting DEPENDSi$ { PN} anywhere (i.e. typically in a recipe) now triggers an error. The error is triggered because
DEPENDS is not a package-specific variable unlike RDEPENDS. You should set DEPENDS instead.

e systemd currently does not work well with the musl C library because only upstream officially supports linking the library
with glibc. Thus, a warning is shown when building systemd in conjunction with musl.

4.16.8. Miscellaneous Changesf|

The following miscellaneous changes have occurred.

e The gnome class has been removed because it now does very little. You should update recipes that previously inherited
this class to do the following:

inherit gnomebase gtk-icon-cache gconf mime

« Themeta/recipes-kernel/linux/linux-dtb. inc file has been removed. This file was previously
deprecated in favor of setting KERNETL,_DEVICETREFE in any kernel recipe and only produced a warning. Remove
any include or require statements pointing to this file.

o« TARGET CFILAGS, TARGET CPPFILAGS, TARGET CXXFTLAGS, and TARGET ITDFLAGS are no
longer expo_rted to the external environment. This change did not require any changes to core re_cipes, which is a good
indicator that no changes will be required. However, if for some reason the software being built by one of your recipes is
expecting these variables to be set, then building the recipe will fail. In such cases, you must either export the variable or
variables in the recipe or change the scripts so that exporting is not necessary.

e You must change the host distro identifier used in NATTVETL.SBSTRTING to use all lowercase characters even if it

does not contain a version number. This change is necessary only if you are not using uninative and
SANT TY_TESTED_DISTROS.

o Inthe base-files recipe, writing the hostname into /etc/hosts and /etc/hostname is now done
within the main do__install function rather thaninthe do install basefilesissue function. The
reason for the change is because do install basefilesissue is more easily overridden without having to
duplicate the hostname functionality. If you have done the latter (e.g. in a base—files bbappend), then you should
remove it from your customized do_install basefilesissue function.

e Thewic —--expand command now uses commas to separate "key:value" pairs rather than hyphens.

Note

The wic command-line help is not updated.

You must update any scripts or commands where you use Wic —-expand with multiple "key:value" pairs.

e UEFI image variable settings have been moved from various places to a central conf/image—uefi .conf. This
change should not influence any existing configuration as the meta/conf/image—uefi .conf in the core
metadata sets defaults that can be overridden in the same manner as before.

« conf/distro/include/world-broken.inc has been removed. For cases where certain recipes need
to be disabled when using the musl C library, these recipes now have COMPATIBLE_HOST_libc—muSl set
with a comment that explains why.

Chapter 5. Source Directory Structureq

Table of Contents
5.1. Top-Level Core Components

5.1.1. bitbake/
5.1.2.build/

5.1.3. documentation
5.1.4. meta/

5.1.5. meta-poky/

5.1.6. meta-yocto-bsp/

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

62/235

3/4/2020 Yocto Project Reference Manual

5.1.7. meta-selftest

5.1.8. meta-skeleton

5.1.9. scripts/

5.1.10. ce—init-build-env

5.1.11. LICENSE, README, and README.hardware

5.2. The Build Directory - build
5.2.1. build/buildhistory
5.2.2.build/conf/local.conf
5.2.3.build/conf/bblayers.conf
52.4.build/conf/sanity info
5.2.5.build/downloads
5.2.6. build/sstate-cache
52.7.build/tmp/
5.2.8.build/tmp/buildstats
5.2.9.build/tmp/cache/
5.2.10. build/tmp/deploy/
5.2.11. build/tmp/deploy/deb
5.2.12. build/tmp/deploy/rpm/
5.2.13. build/tmp/deploy/ipk/
5.2.14. build/tmp/deploy/licenses
5.2.15.build/tmp/deploy/images
5.2.16. build/tmp/deploy/sdk
5.2.17.build/tmp/sstate-control
5.2.18. build/tmp/sysroots-components/
5.2.19.build/tmp/sysroots/
5.2.20. build/tmp/stamps/
5.2.21.build/tmp/log/
5.2.22. build/tmp/work
5.2.23. build/tmp/work/tunearch/recipename/version

5.2.24.build/tmp/work-shared

5.3. The Metadata - meta
5.3.1.meta/classes/
5.3.2.meta/conf
5.3.3.meta/conf/machine
5.3.4.meta/conf/distro
5.3.5.meta/conf/machine-sdk
5.3.6.meta/files/
53.7.meta/lib
5.3.8.meta/recipes-bsp/
5.3.9.meta/recipes-connectivity/
5.3.10. meta/recipes-core
5.3.11.meta/recipes-devtools
5.3.12. meta/recipes—-extended
5.3.13. meta/recipes—-gnome/
5.3.14. meta/recipes—-graphics/
5.3.15.meta/recipes—-kernel/
5.3.16. meta/recipes-1sb4
5.3.17.meta/recipes-multimedia
5.3.18. meta/recipes-rt
5.3.19.meta/recipes-sato
5.3.20. meta/recipes—support/
5.3.21.meta/site/

5.3.22. meta/recipes.txt

The Source Directory consists of several components. Understanding them and knowing where they are located is key to
using the Yocto Project well. This chapter describes the Source Directory and gives information about the various files and
directories.

For information on how to establish a local Source Directory on your development system, see the "Locating_Yocto Project
Source Files" section in the Yocto Project Development Tasks Manual.

Note

The OpenEmbedded build system does not support file or directory names that contain spaces. Be
sure that the Source Directory you use does not contain these types of names.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

63/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#locating-yocto-project-source-files

3/4/2020

Yocto Project Reference Manual

5.1. Top-Level Core Componentsq

This section describes the top-level components of the Source Directory.

5.1.1. bitbake/q|

This directory includes a copy of BitBake for ease of use. The copy usually matches the current stable BitBake release from
the BitBake project. BitBake, a Metadata interpreter, reads the Yocto Project Metadata and runs the tasks defined by that
data. Failures are usually from the Metadata and not from BitBake itself. Consequently, most users do not need to worry
about BitBake.

When you run the bitbake command, the main BitBake executable, which resides in the bitbake/bin/ directory,
starts. Sourcing the environment setup script (i.e. ce—init—-build-env) places the scripts and
bitbake/bin directories (in that order) into the shell's PATH environment variable.

For more information on BitBake, see the BitBake User Manual.

5.1.2. build/q

This directory contains user configuration files and the output generated by the OpenEmbedded build system in its standard
configuration where the source tree is combined with the output. The Build Directory is created initially when you source
the OpenEmbedded build environment setup script (i.e. ce—init-build-enwv).

It is also possible to place output and configuration files in a directory separate from the Source Directory by providing a
directory name when you Source the setup script. For information on separating output from your local Source Directory
files, see the "oe—init-build—-env" section.

5.1.3. documentation/q

This directory holds the source for the Yocto Project documentation as well as templates and tools that allow you to generate
PDF and HTML versions of the manuals. Each manual is contained in a sub-folder. For example, the files for this manual
reside in the ref—manual/ directory.

5.1.4.meta/q

This directory contains the OpenEmbedded-Core metadata. The directory holds recipes, common classes, and machine
configuration for emulated targets (qemux 86, gemuaxrm, and so forth.)

5.1.5. meta-poky/

This directory contains the configuration for the Poky reference distribution.

5.1.6. meta-yocto-bsp/

This directory contains the Yocto Project reference hardware Board Support Packages (BSPs). For more information on BSPs,
see the Yocto Project Board Support Package (BSP)_Developer's Guide.

5.1.7.meta-selftest/q

This directory adds additional recipes and append files used by the OpenEmbedded selftests to verify the behavior of the
build system.

You do not have to add this layer to your bblayers.conf file unless you want to run the selftests.

5.1.8. meta-skeleton/q

This directory contains template recipes for BSP and kernel development.

5.1.9. scripts/f

This directory contains various integration scripts that implement extra functionality in the Yocto Project environment (e.g.
QEMU scripts). The oe—init-build—envV script appends this directory to the shell's PATH environment variable.

The scripts directory has useful scripts that assist in contributing back to the Yocto Project, such as create—
pull-request and send-pull-request.

5.1.10. ce-init-build-envf

This script sets up the OpenEmbedded build environment. Running this script with the SOUurce command in a shell makes
changes to PATH and sets other core BitBake variables based on the current working directory. You need to run an
environment setup script before running BitBake commands. The script uses other scripts within the SCripts directory
to do the bulk of the work.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

64/235

http://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html
http://www.yoctoproject.org/docs/3.1/bsp-guide/bsp-guide.html

3/4/2020 Yocto Project Reference Manual

When you run this script, your Yocto Project environment is set up, a Build Directory is created, your working directory
becomes the Build Directory, and you are presented with a list of common BitBake targets. Here is an example:

$ source oe-init-build-env
Shell environment set up for builds. #i#
You can now run ‘'bitbake <target>'

Common targets are:
core-image-minimal
core-image-sato
meta-toolchain
meta-ide-support

You can also run generated gemu images with a command like 'rungemu gemux86'

The script gets its default list of common targets from the conf—-notes. txt file, which is found in the meta-
poky directory within the Source Directory. Should you have custom distributions, it is very easy to modify this
configuration file to include your targets for your distribution. See the "Creating_a Custom Template Configuration Directory"
section in the Yocto Project Development Tasks Manual for more information.

By default, running this script without a Build Directory argument creates the bui 1 d directory in your current working
directory. If you provide a Build Directory argument when you SOUX Ce the script, you direct the OpenEmbedded build
system to create a Build Directory of your choice. For example, the following command creates a Build Directory named
mybuilds thatis outside of the Source Directory:

$ source oe-init-build-env ~/mybuilds
The OpenEmbedded build system uses the template configuration files, which are found by default in the meta-—

poky/ conf directory in the Source Directory. See the "Creating_a Custom Template Configuration Directory" section in
the Yocto Project Development Tasks Manual for more information.

Note

The OpenEmbedded build system does not support file or directory names that contain spaces. If
you attempt to run the oe—init-build-env script from a Source Directory that contains

spaces in either the filenames or directory names, the script returns an error indicating no such file
or directory. Be sure to use a Source Directory free of names containing spaces.

5.1.11. LICENSE, README, and README.hardware(

These files are standard top-level files.

5.2. The Build Directory - build/q

The OpenEmbedded build system creates the Build Directory when you run the build environment setup scripts (i.e. 0&—
init-build-env).

If you do not give the Build Directory a specific name when you run a setup script, the name defaults to build.

The TOPDIR variable points to the Build Directory.

5.2.1. build/buildhistoryf

The OpenEmbedded build system creates this directory when you enable the build history feature. The directory tracks build
information into image, packages, and SDK subdirectories. For information on the build history feature, see the "Maintaining
Build Qutput Quality" section in the Yocto Project Development Tasks Manual.

5.2.2.build/conf/local.conf(

This configuration file contains all the local user configurations for your build environment. The 1ocal . conf file
contains documentation on the various configuration options. Any variable set here overrides any variable set elsewhere
within the environment unless that variable is hard-coded within a file (e.g. by using '=' instead of '?="). Some variables are
hard-coded for various reasons but these variables are relatively rare.

Edit this file to set the MACH I NE for which you want to build, which package types you wish to use
(PACKAGE _CLASSES), and the location from which you want to access downloaded files (DL__DTR).

If local.conf is not present when you start the build, the OpenEmbedded build system creates it from
local.conf.sample whenyou source the top-level build environment setup script (i.e. 0e—init—
build-envwv).

The source 1ocal.conf.sample file used depends on the STEMPLATECONF script variable, which defaults to
meta-po ky/ conf when you are building from the Yocto Project development environment and defaults to
meta/conf when you are building from the OpenEmbedded-Core environment. Because the script variable points to the

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 65/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#creating-a-custom-template-configuration-directory
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#creating-a-custom-template-configuration-directory
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#maintaining-build-output-quality

3/4/2020 Yocto Project Reference Manual

source of the Jlocal.conf. Sample file, this implies that you can configure your build environment from any layer
by setting the variable in the top-level build environment setup script as follows:

TEMPLATECONF=your_Llayer/conf

Once the build process gets the sample file, it uses sed to substitute final $ { OEROOT } values for all # #OEROQT # #
values.

Note

You can see how the TEMPLATECONTF variable is used by looking at the Scripts/oe-
setup-builddir scriptin the Source Directory. You can find the Yocto Project version of
the local.conf.sample file inthe meta-poky/conf directory.

5.2.3.build/conf/bblayers.conff

This configuration file defines layers, which are directory trees, traversed (or walked) by BitBake. The
bblayers.conf file uses the BBLAYERS variable to list the layers BitBake tries to find.

Ifbblayers.conf is not present when you start the build, the OpenEmbedded build system creates it from
bblayers.conf.sample when you source the top-level build environment setup script (i.e. oe—init—
build-enw).

The source bblayers.conf.sample file used depends on the STEMPLATECONF script variable, which
defaults to meta—poky/ conf when you are building from the Yocto Project development environment and defaults to
meta/conf when you are building from the OpenEmbedded-Core environment. Because the script variable points to the
source of the bblayers.conf.sample file, this implies that you can base your build from any layer by setting the
variable in the top-level build environment setup script as follows:

TEMPLATECONF=your_Llayer/conf

Once the build process gets the sample file, it uses Sed to substitute final $ { OEROOT } values for all # #OEROOT# #
values.

Note

You can see how the TEMPLATECONF variable scripts/oe-setup-builddir
script in the Source Directory. You can find the Yocto Project version of the
bblayers.conf.sample file in the meta-poky/conf directory.

5.2.4.build/conf/sanity infof

This file indicates the state of the sanity checks and is created during the build.

5.2.5.build/downloads/

This directory contains downloaded upstream source tarballs. You can reuse the directory for multiple builds or move the
directory to another location. You can control the location of this directory through the DI._DIR variable.

5.2.6.build/sstate-cache/

This directory contains the shared state cache. You can reuse the directory for multiple builds or move the directory to
another location. You can control the location of this directory through the SSTATE_DIR variable.

5.2.7.build/tmp/f

The OpenEmbedded build system creates and uses this directory for all the build system's output. The TMPD IR variable
points to this directory.

BitBake creates this directory if it does not exist. As a last resort, to clean up a build and start it from scratch (other than the
downloads), you can remove everything in the tmp directory or get rid of the directory completely. If you do, you should
also completely remove the build/sstate-cache directory.

5.2.8. build/tmp/buildstats/f

This directory stores the build statistics.

5.2.9. build/tmp/cache/q

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 66/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#understanding-and-creating-layers

3/4/2020

Yocto Project Reference Manual

When BitBake parses the metadata (recipes and configuration files), it caches the results in build/tmp/cache/ to
speed up future builds. The results are stored on a per-machine basis.

During subsequent builds, BitBake checks each recipe (together with, for example, any files included or appended to it) to
see if they have been modified. Changes can be detected, for example, through file modification time (mtime) changes and
hashing of file contents. If no changes to the file are detected, then the parsed result stored in the cache is reused. If the file
has changed, it is reparsed.

5.2.10. build/tmp/deploy/

This directory contains any "end result" output from the OpenEmbedded build process. The DEPT.OY DTIR variable points
to this directory. For more detail on the contents of the deploy directory, see the "Images" and "Application Development
SDK" sections in the Yocto Project Overview and Concepts Manual.

5.2.11. build/tmp/deploy/deb/

This directory receives any . delb packages produced by the build process. The packages are sorted into feeds for different
architecture types.

5.2.12. build/tmp/deploy/rpm/

This directory receives any . P packages produced by the build process. The packages are sorted into feeds for different
architecture types.

5.2.13. build/tmp/deploy/ipk/1

This directory receives . ipk packages produced by the build process.

5.2.14. build/tmp/deploy/licenses/

This directory receives package licensing information. For example, the directory contains sub-directories for bash,
busybox, and gl ibc (among others) that in turn contain appropriate COPY ING license files with other licensing
information. For information on licensing, see the "Maintaining_Open Source License Compliance During_Your Product's
Lifecycle" section in the Yocto Project Development Tasks Manual.

5.2.15. build/tmp/deploy/images/

This directory receives complete filesystem images. If you want to flash the resulting image from a build onto a device, look
here for the image.

Be careful when deleting files in this directory. You can safely delete old images from this directory (e.g. Core—image—
*). However, the kernel (*zImage*, *ulmage¥, etc.), bootloader and other supplementary files might be deployed
here prior to building an image. Because these files are not directly produced from the image, if you delete them they will
not be automatically re-created when you build the image again.

If you do accidentally delete files here, you will need to force them to be re-created. In order to do that, you will need to
know the target that produced them. For example, these commands rebuild and re-create the kernel files:

$ bitbake -c clean virtual/kernel
$ bitbake virtual/kernel

5.2.16. build/tmp/deploy/sdk/1

The OpenEmbedded build system creates this directory to hold toolchain installer scripts, which when executed, install the
sysroot that matches your target hardware. You can find out more about these installers in the "Building_an SDK Installer"
section in the Yocto Project Application Development and the Extensible Software Development Kit (eSDK) manual.

5.2.17.build/tmp/sstate-control/q

The OpenEmbedded build system uses this directory for the shared state manifest files. The shared state code uses these
files to record the files installed by each sstate task so that the files can be removed when cleaning the recipe or when a
newer version is about to be installed. The build system also uses the manifests to detect and produce a warning when files
from one task are overwriting those from another.

5.2.18. build/tmp/sysroots-components/f

This directory is the location of the sysroot contents that the task deﬁpare recipe SYSroot links or
copies into the recipe-specific sysroot for each recipe listed in DE PENDS. Populati;n of this dirgctory is handled through
shared state, while the path is specified by the COMPONENTS DITR variable. Apart from a few unusual circumstances,
handling of the sysroots—components directory should be automatic, and recipes should not directly reference
build/tmp/sysroots-components.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

67/235

http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#images-dev-environment
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#sdk-dev-environment
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/3.1/sdk-manual/sdk-manual.html#sdk-building-an-sdk-installer

3/4/2020 Yocto Project Reference Manual

5.2.19. build/tmp/sysroots/f

Previous versions of the OpenEmbedded build system used to create a global shared sysroot per machine along with a native
sysroot. Beginning with the 3.1 version of the Yocto Project, sysroots exist in recipe-specific WORKD IR directories. Thus,
thebuild/tmp/sysroots/ directory is unused.

Note
The build/tmp/sysroots/ directory can still be populated using the bitbake
build-sysroots command and can be used for compatibility in some cases. However, in

general it is not recommended to populate this directory. Individual recipe-specific sysroots should
be used.

5.2.20. build/tmp/stamps/f

This directory holds information that BitBake uses for accounting purposes to track what tasks have run and when they have
run. The directory is sub-divided by architecture, package name, and version. Following is an example:

stamps/all-poky-linux/distcc-config/1.0-r@.do_build-2fdd....2do

Although the files in the directory are empty of data, BitBake uses the filenames and timestamps for tracking purposes.

For information on how BitBake uses stamp files to determine if a task should be rerun, see the "Stamp Files and the
Rerunning_of Tasks" section in the Yocto Project Overview and Concepts Manual.

5.2.21.build/tmp/log/

This directory contains general logs that are not otherwise placed using the package's WORKDTR. Examples of logs are the
output from the do__check pkgordo distro check tasks. Running a build does not necessarily mean this
directory is created.

5.2.22. build/tmp/work/

This directory contains architecture-specific work sub-directories for packages built by BitBake. All tasks execute from the
appropriate work directory. For example, the source for a particular package is unpacked, patched, configured and compiled
all within its own work directory. Within the work directory, organization is based on the package group and version for
which the source is being compiled as defined by the WORKDIR.

It is worth considering the structure of a typical work directory. As an example, consider linux—yocto—ke rnel-
3. 0 on the machine gemux 8 6 built within the Yocto Project. For this package, a work directory of
tmp/work/gemux86-poky-linux/linux-yocto/3.0+gitl+<..... >, referred to as the
WORKDIR, is created. Within this directory, the source is unpacked to 1 inux-gemux86-standard-build
and then patched by Quilt. (See the "Using_Quilt in Your Workflow" section in the Yocto Project Development Tasks Manual
for more information.) Within the 1 inux—-gemux86-standard-bui ld directory, standard Quilt directories
linux-3.0/patches and 1inux-3.0/.pcC are created, and standard Quilt commands can be used.

There are other directories generated within WORKDTIR. The most important directory is WORKDIR/temp/, which
has log files for each task (L0g.do * .pid) and contains the scripts BitBake runs for each task

(run.do *.pid).The WORKDIR/ image/ directory is where "make install" places its output that is then split
into sub-packages within WORKDIR/packages—-split/.

5.2.23. build/tmp/work/tunearch/recipename/version/q|
The recipe work directory - $ {WORKDIR}.

As described earlier in the "bui 1d/ tmp_&ys roots /" section, beginning with the 3.1 release of the Yocto Project,
the OpenEmbedded build system builds each recipe in its own work directory (i.e. WORKDTR). The path to the work
directory is constructed using the architecture of the given build (e.g. TUNE PKGARCH, MACHINE ARCH, or
"allarch"), the recipe name, and the version of the recipe (i.e. PE : PV—-PR).

A number of key subdirectories exist within each recipe work directory:

e S{WORKDIR}/temp: Contains the log files of each task executed for this recipe, the "run" files for each executed
task, which contain the code run, and a log . task_order file, which lists the order in which tasks were executed.

o S{WORKDIR}/image: Contains the output of the do_install task, which corresponds to the S {D}
variable in that task.

e S{WORKDIR} /pseudo: Contains the pseudo database and log for any tasks executed under pseudo for the
recipe.

o S{WORKDIR}/sysroot-destdir: Contains the output of the do_populate sysroot task.

o S{WORKDIR}/package: Contains the output of the do_packadge task before the output is split into
individual packages.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 68/235

http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#stamp-files-and-the-rerunning-of-tasks
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#using-a-quilt-workflow

3/4/2020

Yocto Project Reference Manual

o S{WORKDIR}/packages—-split: Contains the output of the do_package task after the output has been
split into individual packages. Subdirectories exist for each individual package created by the recipe.

e« S{WORKDIR}/recipe—-sysroot: A directory populated with the target dependencies of the recipe. This
directory looks like the target filesystem and contains libraries that the recipe might need to link against (e.g. the C
library).

e S{WORKDIR}/recipe-sysroot-native: A directory populated with the native dependencies of the
recipe. This directory contains the tools the recipe needs to build (e.g. the compiler, Autoconf, libtool, and so forth).

o S{WORKDIR} /build: This subdirectory applies only to recipes that support builds where the source is separate
from the build artifacts. The OpenEmbedded build system uses this directory as a separate build directory (i.e. S {B}).

5.2.24. build/tmp/work-shared/q

For efficiency, the OpenEmbedded build system creates and uses this directory to hold recipes that share a work directory
with other recipes. In practice, this is only used for gCC and its variants (e.g. gcc—cross, 1libgcc, gcc-
runtime, and so forth).

5.3. The Metadata - meta/q

As mentioned previously, Metadata is the core of the Yocto Project. Metadata has several important subdivisions:

5.3.1.meta/classes/q

This directory contains the * . blbclass files. Class files are used to abstract common code so it can be reused by
multiple packages. Every package inherits the base .bbclass file. Examples of other important classes are
autotools.bbclass, which in theory allows any Autotool-enabled package to work with the Yocto Project with
minimal effort. Another example is kernel .blbclass that contains common code and functions for working with the
Linux kernel. Functions like image generation or packaging also have their specific class files such as image .bbclass,
rootfs *.bbclassand package*.bbclass.

For reference information on classes, see the "Classes" chapter.

5.3.2. meta/conf/

This directory contains the core set of configuration files that start from bitbake.conf and from which all other
configuration files are included. See the include statements at the end of the bitbake.conf file and you will note that
even local.conf is loaded from there. While bitlbake.conf sets up the defaults, you can often override these
by using the (Local . conf) file, machine file or the distribution configuration file.

5.3.3. meta/conf/machine/q

This directory contains all the machine configuration files. If you set MACHINE = "gemux86", the OpenEmbedded
build system looks for a gemux 86 . conf file in this directory. The 1nclude directory contains various data common
to multiple machines. If you want to add support for a new machine to the Yocto Project, look in this directory.

5.3.4.meta/conf/distro/q

The contents of this directory controls any distribution-specific configurations. For the Yocto Project, the
defaultsetup.conf is the main file here. This directory includes the versions and the SRCDATE definitions for
applications that are configured here. An example of an alternative configuration might be poky-bleeding.conf.
Although this file mainly inherits its configuration from Poky.

5.3.5. meta/conf/machine-sdk/q

The OpenEmbedded build system searches this directory for configuration files that correspond to the value of
SDKMACHTINE. By default, 32-bit and 64-bit x86 files ship with the Yocto Project that support some SDK hosts. However,
it is possible to extend that support to other SDK hosts by adding additional configuration files in this subdirectory within
another layer.

5.3.6.meta/files/q

This directory contains common license files and several text files used by the build system. The text files contain minimal
device information and lists of files and directories with known permissions.

5.3.7.meta/lib/q

This directory contains OpenEmbedded Python library code used during the build process.

5.3.8. meta/recipes-bsp/q

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

69/235

3/4/2020 Yocto Project Reference Manual

This directory contains anything linking to specific hardware or hardware configuration information such as "u-boot" and
"grub".

5.3.9. meta/recipes-connectivity/

This directory contains libraries and applications related to communication with other devices.

5.3.10. meta/recipes-core/

This directory contains what is needed to build a basic working Linux image including commonly used dependencies.

5.3.11. meta/recipes-devtools/f

This directory contains tools that are primarily used by the build system. The tools, however, can also be used on targets.

5.3.12. meta/recipes-extended/

This directory contains non-essential applications that add features compared to the alternatives in core. You might need this
directory for full tool functionality or for Linux Standard Base (LSB) compliance.

5.3.13. meta/recipes-gnome/f

This directory contains all things related to the GTK+ application framework.

5.3.14. meta/recipes-graphics/

This directory contains X and other graphically related system libraries

5.3.15. meta/recipes-kernel/

This directory contains the kernel and generic applications and libraries that have strong kernel dependencies.

5.3.16. meta/recipes-1sb4/q

This directory contains recipes specifically added to support the Linux Standard Base (LSB) version 4.x.

5.3.17. meta/recipes-multimedia/

This directory contains codecs and support utilities for audio, images and video.

5.3.18. meta/recipes-rt/q

This directory contains package and image recipes for using and testing the PREEMPT RT kernel.

5.3.19. meta/recipes-sato/

This directory contains the Sato demo/reference UI/UX and its associated applications and configuration data.

5.3.20. meta/recipes-support/

This directory contains recipes used by other recipes, but that are not directly included in images (i.e. dependencies of other
recipes).

5.3.21.meta/site/q

This directory contains a list of cached results for various architectures. Because certain "autoconf" test results cannot be
determined when cross-compiling due to the tests not able to run on a live system, the information in this directory is
passed to "autoconf" for the various architectures.

5.3.22. meta/recipes. txt(

This file is a description of the contents of recipes—*.

Chapter 6. Classes

Table of Contents

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 70/235

3/4/2020
6.1.

Yocto Project Reference Manual

allarch.bbclass

6.2.

archiver.bbclass

6.3.

autotools*.bbclass

6.4.

base.bbclass

bash-completion.bbclass

6.5.
6.6.

bin package.bbclass

binconfig.bbclass

6.7.
6.8.

binconfig-disabled.bbclass

6.9.

blacklist.bbclass

6.10.

buildhistory.bbclass

6.11.

buildstats.bbclass

6.12.

buildstats—-summary.bbclass

.ccache.bbclass
.chrpath.bbclass
.clutter.bbclass

6.13
6.14
6.15

6.16.

cmake.bbclass

6.17.

cmll.bbclass

6.18.

6.19.

compress doc.bbclass
copyleft compliance.bbclass

6.20.

copyleft filter.bbclass

.core—image.bbclass
6.22. cpan*.bbclass

6.21

6.23.

cross.bbclass

6.24.

cross—-canadian.bbclass

6.25.

crosssdk.bbclass

6.26.

debian.bbclass

6.27. deploy.bbclass
.devshell .bbclass

6.28

.devupstream.bbclass

6.29
6.30

.distro features check.bbclass
6.31.

distutils*.bbclass

6.32.

distutils3*.bbclass

6.33.

externalsrc.bbclass

6.34.

extrausers.bbclass

.fontcache.bbclass

6.35

.fs-uuid.bbclass
6.37. gconf.bbclass
6.38. gettext.bbclass
6.39. gnomebase .bbclass

6.36

6.40

.gobject-introspection.bbclass

6.41

.grub-efi.bbclass

6.42. gsettings.bbclass
6.43. gtk—-doc.bbclass
6.44. gtk—icon-cache.bbclass

6.45.

gtk—immodules-cache.bbclass

6.46.

gzipnative.bbclass

6.47.

icecc.bbclass

6.48.

image.bbclass

.image-buildinfo.bbclass

6.49

.image types.bbclass

6.50

.image—-live.bbclass

6.51
6.52

.image-mklibs.bbclass

6.53.

image-prelink.bbclass

6.54.

insane.bbclass

6.55.

insserv.bbclass

6.56.

kernel .bbclass

6.57

.kernel-arch.bbclass

. kernel-devicetree.bbclass

6.58
6.59

.kernel-fitimage.bbclass

6.60

.kernel-grub.bbclass

6.61.

kernel-module-split.bbclass

6.62.

kernel-uboot.bbclass

6.63.

kernel-uimage.bbclass

.kernel-yocto.bbclass

6.64
6.65

.kernelsrc.bbclass

.1ib package.bbclass
.libc*.bbclass

6.66
6.67

6.68.

license.bbclass

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

71/235

3/4/2020

6.69. linux-kernel-base.bbclass
6.70. linuxloader.bbclass
6.71. logging.bbclass

6.72. meta.bbclass

6.73. metadata scm.bbclass
6.74.migrate localcount.bbclass
6.75.mime .bbclass

6.76. mirrors.bbclass
6.77.module.bbclass

6.78. module-base.bbclass
6.79.multilib*.bbclass
6.80. native.bbclass

6.81. nativesdk.bbclass
6.82. nopackages.bbclass
6.83. npm.bbclass

6.84. coelint .bbclass

6.85. own-mirrors.bbclass
6.86. package.bbclass

6.87. package deb.bbclass
6.88. package ipk.bbclass
6.89. package rpm.bbclass
6.90. package tar.bbclass
6.91. packagedata.bbclass

6.93. patch.bbclass

6.94. perlnative.bbclass
6.95. pixbufcache.bbclass
6.96. pkgconfig.bbclass

6.97. populate sdk.bbclass
6.98. populate sdk *.bbclass
6.99. prexport.bbclass

6.100. primport.bbclass

6.101. prserv.pbbclass

6.102. ptest .bbclass

6.103. ptest-gnome.bbclass
6.104. python-dir.bbclass
6.105. python3native.bbclass
6.106. pythonnative.bbclass
6.107. gemu.bbclass

6.108. recipe sanity.bbclass
6.109. relocatable.bbclass
6.110. remove—-libtool.bbclass
6.111. report—-error.bbclass
6.112. rm work.bbclass

6.113. rootfs*.bbclass

6.114. sanity.bbclass

6.115. scons .bbclass

6.116. sdl .bbclass

6.117. setuptools.bbclass
6.118. setuptools3.bbclass
6.119. sign rpm.bbclass

6.120. sip.bbclass

6.121. siteconfig.bbclass
6.122. siteinfo.bbclass

6.123. spdx .bbclass

6.124. sstate.bbclass

6.125. staging.bbclass

6.126. syslinux.bbclass

6.127. systemd.bbclass

6.128. systemd-boot .bbclass
6.129. terminal .bbclass

6.130. testimage* .bbclass
6.131. testsdk.bbclass

6.132. texinfo.bbclass

6.133. tinderclient .bbclass
6.134. toaster.bbclass

6.135. toolchain-scripts.bbclass
6.136. typecheck.bbclass

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

Yocto Project Reference Manual

72/235

3/4/2020

Yocto Project Reference Manual

6.137. uboot-config.bbclass

6.138. uninative.bbclass

6.139. update-alternatives.bbclass
6.140. update-rc.d.bbclass

6.141. useradd* .bbclass

6.142. utility-tasks.bbclass

6.143. utils.bbclass

6.144. vala .bbclass
6.145. waf .bbclass

Class files are used to abstract common functionality and share it amongst multiple recipe (. D) files. To use a class file,
you simply make sure the recipe inherits the class. In most cases, when a recipe inherits a class it is enough to enable its
features. There are cases, however, where in the recipe you might need to set variables or override some default behavior.

Any Metadata usually found in a recipe can also be placed in a class file. Class files are identified by the extension
.bbclass and are usually placed in a classes/ directory beneath the meta* / directory found in the Source
Directory. Class files can also be pointed to by BUILDDIR (e.g. build/) in the same way as . conf files in the
conft directory. Class files are searched for in BBPATH using the same method by which . conf files are searched.

This chapter discusses only the most useful and important classes. Other classes do exist within the meta/classes
directory in the Source Directory. You can reference the .bbbclass files directly for more information.

6.1. allarch.bbclass

The allarch class is inherited by recipes that do not produce architecture-specific output. The class disables
functionality that is normally needed for recipes that produce executable binaries (such as building the cross-compiler and a
C library as pre-requisites, and splitting out of debug symbols during packaging).

Note

Unlike some distro recipes (e.g. Debian), OpenEmbedded recipes that produce packages that
depend on tunings through use of the RDEPENDS and TUNE_ PKGARCH variables, should
never be configured for all architectures using a1 laxrch. This is the case even if the recipes
do not produce architecture-specific output.

Configuring such recipes for all architectures causes the dL_package_write_* tasks to
have different signatures for the machines with different tunings. Additionally, unnecessary
rebuilds occur every time an image for a different MACHINE is built even when the recipe
never changes.

By default, all recipes inherit the base and package classes, which enable functionality needed for recipes that
produce executable output. If your recipe, for example, only produces packages that contain configuration files, media files,
or scripts (e.g. Python and Perl), then it should inherit the a1l 1larch class.

6.2. archiver .bbclass]
The archiver class supports releasing source code and other materials with the binaries.

For more details on the source archiver, see the "Maintaining Open Source License Compliance During_Your Product's
Lifecycle" section in the Yocto Project Development Tasks Manual. You can also see the ARCHIVER MODE variable for
information about the variable flags (varflags) that help control archive creation.

6.3. autotools* .bbclassf

The autotools™ classes support Autotooled packages.

The autoconf, automake, and 1ibtool packages bring standardization. This class defines a set of tasks (e.g.
Configure, compile and so forth) that work for all Autotooled packages. It should usually be enough to define a
few standard variables and then simply inherit autotools. These classes can also work with software that
emulates Autotools. For more information, see the "Autotooled Package" section in the Yocto Project Development Tasks
Manual.

By default, the aut ot 0ol s™* classes use out-of-tree builds (i.e. autotools.bbclass buildingwithB !=
S).

If the software being built by a recipe does not support using out-of-tree builds, you should have the recipe inherit the
autotools-brokensep class. The autotools-brokensep class behaves the same as the
autotools class but builds with B == S. This method is useful when out-of-tree build support is either not present or
is broken.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

73/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#new-recipe-autotooled-package

3/4/2020

Yocto Project Reference Manual

Note

It is recommended that out-of-tree support be fixed and used if at all possible.

It's useful to have some idea of how the tasks defined by the aut 0ot 001l s* classes work and what they do behind the
scenes.

. doiconfigure - Regenerates the configure script (using autoreconf) and then launches it with a standard
set of arguments used during cross-compilation. You can pass additional parameters to Configure through the
EXTRA_OECONF or PACKAGECONFIG_CONFARGS variables.

° do_compile - Runs ma ke with arguments that specify the compiler and linker. You can pass additional arguments
through the EXTRA OEMAKE variable.

o« do install -Runsmake install and passesin ${D} as DESTDIR.

6.4. base.bbclassf

The base class is special in that every . DD file implicitly inherits the class. This class contains definitions for standard
basic tasks such as fetching, unpacking, configuring (empty by default), compiling (runs any Make file present),
installing (empty by default) and packaging (empty by default). These classes are often overridden or extended by other
classes such as the autotools class or the package class.

The class also contains some commonly used functions such as oe_runmake, which runs ma ke with the arguments
specified in EXTRA OEMAKE variable as well as the arguments passed directly to oe_runmake.

6.5. bash-completion.bbclass

Sets up packaging and dependencies appropriate for recipes that build software that includes bash-completion data.

6.6. bin_package.bbclassf

The binipackage class is a helper class for recipes that extract the contents of a binary package (e.g. an RPM) and
install those contents rather than building the binary from source. The binary package is extracted and new packages in the
configured output package format are created. Extraction and installation of proprietary binaries is a good example use for
this class.

Note

For RPMs and other packages that do not contain a subdirectory, you should specify an appropriate
fetcher parameter to point to the subdirectory. For example, if BitBake is using the Git fetcher

(git 2/ /), the "subpath" parameter limits the checkout to a specific subpath of the tree. Here is
an example where $ {BP} is used so that the files are extracted into the subdirectory expected
by the default value of S:

SRC_URI = "git://example.com/downloads/somepackage.rpm;subpath=${BP}"

See the "Fetchers" section in the BitBake User Manual for more information on supported BitBake
Fetchers.

6.7.binconfig.bbclass]

The binconfig class helps to correct paths in shell scripts.

Before pkg—config had become widespread, libraries shipped shell scripts to give information about the libraries and
include paths needed to build software (usually named LIBNAME—-confiq). This class assists any recipe using such
scripts.

During staging, the OpenEmbedded build system installs such scripts into the Sy s roots/ directory. Inheriting this class
results in all paths in these scripts being changed to point into the Sy S roots/ directory so that all builds that use the
script use the correct directories for the cross compiling layout. See the BINCONF'TG GILOB variable for more
information.

6.8. binconfig-disabled.bbclassf

An alternative version of the binconfig class, which disables binary configuration scripts by making them return an
error in favor of using pkg—config to query the information. The scripts to be disabled should be specified using the
BINCONEF TG variable within the recipe inheriting the class.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

74/235

http://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html#bb-fetchers

3/4/2020

Yocto Project Reference Manual

6.9. blacklist.bbclass

The blacklist class prevents the OpenEmbedded build system from building specific recipes (blacklists them). To use
this class, inherit the class globally and set PNBLACKIL I ST for each recipe you wish to blacklist. Specify the PN value as
a variable flag (varflag) and provide a reason, which is reported, if the package is requested to be built as the value. For
example, if you want to blacklist a recipe called "exoticware", you add the following to your 1ocal . conf or distribution
configuration:

INHERIT += "blacklist"
PNBLACKLIST[exoticware] = "Not supported by our organization."

6.10. buildhistory.bbclassf

The buildhistory class records a history of build output metadata, which can be used to detect possible regressions
as well as used for analysis of the build output. For more information on using Build History, see the "Maintaining_Build
Output Quality" section in the Yocto Project Development Tasks Manual.

6.11. buildstats.bbclass

The buildstats class records performance statistics about each task executed during the build (e.g. elapsed time,
CPU usage, and I/0 usage).

When you use this class, the output goes into the BUTLDSTATS BASHE directory, which defaults to
${TMPDIR}/buildstats/. You can analyze the elapsed time using
scripts/pybootchartgui/pybootchartgui . py, which produces a cascading chart of the entire build
process and can be useful for highlighting bottlenecks.

Collecting build statistics is enabled by default through the USER_CLASSES variable from your Local . conf file.
Consequently, you do not have to do anything to enable the class. However, if you want to disable the class, simply remove
"buildstats" from the USER CLASSES list.

6.12. buildstats-summary.bbclassf

When inherited globally, prints statistics at the end of the build on sstate re-use. In order to function, this class requires the
buildstats class be enabled.

6.13. ccache.bbclass(

The ccache class enables the C/C++ Compiler Cache for the build. This class is used to give a minor performance boost
during the build. However, using the class can lead to unexpected side-effects. Thus, it is recommended that you do not use
this class. See http://ccache.samba.org/ for information on the C/C++ Compiler Cache.

6.14. chrpath.bbclass]

The chrpath class is a wrapper around the "chrpath” utility, which is used during the build process for nativesdk,
cross, and cross—canadian recipes to change RPATH records within binaries in order to make them
relocatable.

6.15. clutter.bbclass(

The clutter class consolidates the major and minor version naming and other common items used by Clutter and
related recipes.

Note

Unlike some other classes related to specific libraries, recipes building other software that uses
Clutter do not need to inherit this class unless they use the same recipe versioning scheme that
the Clutter and related recipes do.

6.16. cmake .bbclass]

The cmake class allows for recipes that need to build software using the CMake build system. You can use the
EXTRA OECMAKE variable to specify additional configuration options to be passed using the cmake command line.

On the occasion that you would be installing custom CMake toolchain files supplied by the application being built, you should
install them to the preferred CMake Module directory: ${D} ${datadir}/cmake/ Modules during

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

75/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#maintaining-build-output-quality
http://ccache.samba.org/
https://cmake.org/overview/

3/4/2020

Yocto Project Reference Manual
do install.

6.17. cmll .bbclassf

The cml 1 class provides basic support for the Linux kernel style build configuration system.

6.18. compress_doc.bbclass(

Enables compression for man pages and info pages. This class is intended to be inherited globally. The default compression
mechanism is gz (gzip) but you can select an alternative mechanism by setting the DOC_ COMPRESS variable.

6.19. copyleft compliance.bbclass(

The copylefticompliance class preserves source code for the purposes of license compliance. This class is an
alternative to the archiver class and is still used by some users even though it has been deprecated in favor of the
archiver class.

6.20. copyleft filter.bbclass(

A class used by the archiver and copyleft compliance classes for filtering licenses. The
copyleft filter classisan internal class and is not intended to be used directly.

6.21. core-image.bbclass]

The core-1image class provides common definitions for the COre—image—>* image recipes, such as support for
additional IMAGE, _FEATURES.

6.22. cpan* .bbclass]
The cpan* classes support Perl modules.

Recipes for Perl modules are simple. These recipes usually only need to point to the source's archive and then inherit the
proper class file. Building is split into two methods depending on which method the module authors used.

e Modules that use old Makefile . PL-based build system require cpan .bbclass in their recipes.
e Modules that use Build. PL-based build system require using cpan_build.bbclass in their recipes.

Both build methods inherit the cpan—base class for basic Perl support.

6.23. cross.bbclass]

The CrOsS S class provides support for the recipes that build the cross-compilation tools.

6.24. cross-canadian.bbclassf

The cross—canadian class provides support for the recipes that build the Canadian Cross-compilation tools for
SDKs. See the "Cross-Development Toolchain Generation" section in the Yocto Project Overview and Concepts Manual for
more discussion on these cross-compilation tools.

6.25. crosssdk.bbclassf

The crosssdk class provides support for the recipes that build the cross-compilation tools used for building SDKs. See
the "Cross-Development Toolchain Generation" section in the Yocto Project Overview and Concepts Manual for more
discussion on these cross-compilation tools.

6.26. debian.bbclass

The debian class renames output packages so that they follow the Debian naming policy (i.e. g1l ilbC becomes

libc6 and glibc-devel becomes 1ibc6-dev.) Renaming includes the library name and version as part of the

package name.

If a recipe creates packages for multiple libraries (shared object files of . SO type), use the LEAD SONAME variable in
the recipe to specify the library on which to apply the naming scheme.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

76/235

http://www.yoctoproject.org/docs/3.1/ref-manual/ref-manual.html#ref-tasks-install
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#cross-development-toolchain-generation
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#cross-development-toolchain-generation

3/4/2020

Yocto Project Reference Manual

6.27. deploy.bbclass(

The deploy class handles deploying files to the DEPLOY DIR TIMAGE directory. The main function of this class is
to allow the deploy step to be accelerated by shared state. Rec—ipes that inherit this class should define their own

do deploy function to copy the files to be deployed to DEPLOYDTIR, and use addtask to add the task at the
appropriate place, which is usually after do compileordo install. The class then takes care of staging the
files from DEPLOYDIR to DEPLOY DIR IMAGE. B

6.28. devshell .bbclassf

The devshell class adds the do_devshell task. Distribution policy dictates whether to include this class. See the
"Using_a Development Shell" section in the Yocto Project Development Tasks Manual for more information about using

devshell.

6.29. devupstream.bbclass]

The devupstream class uses BBCLASSEXTEND to add a variant of the recipe that fetches from an alternative URI
(e.g. Git) instead of a tarball. Following is an example:

BBCLASSEXTEND = "devupstream:target”
SRC_URI_class-devupstream = "git://git.example.com/example"
SRCREV_class-devupstream = "abcd1234"

Adding the above statements to your recipe creates a variant that has DEFAULT PREFERENCE set to "-1".
Consequently, you need to select the variant of the recipe to use it. Any development-specific adjustments can be done by
using the class—devupstream override. Here is an example:

DEPENDS_append_class-devupstream = " gperf-native"

do_configure_prepend_class-devupstream() {
touch ${S}/README
}

The class currently only supports creating a development variant of the target recipe, not native ornativesdk
variants.

The BBCLASSEXTEND syntax (i.e. devupstream: target) provides support for native and
nativesdk variants. Consequently, this functionality can be added in a future release.

Support for other version control systems such as Subversion is limited due to BitBake's automatic fetch dependencies (e.g.
subversion-native).

6.30. distro_features_check.bbclass(

Thedistro features check class allows individual recipes to check for required and conflicting
DISTRO FEATURES.

This class provides support for the REQUIRED DISTRO FEATURES and
CONFLICT DISTRO FEATURES variables. If any conditions specified in the recipe using the above variables are
not met, the recipe will be skipped.

6.31. distutils* .bbclassf

The distutils™ classes support recipes for Python version 2.x extensions, which are simple. These recipes usually
only need to point to the source's archive and then inherit the proper class. Building is split into two methods depending on
which method the module authors used.

o Extensions that use an Autotools-based build system require Autotools and the classes based on distutils in their
recipes.

s Extensions that use build systems based on distutils requirethe distutils class in their recipes.

« Extensions that use build systems based on setuptools require the setuptools class in their recipes.

The distutils—common-base class is required by some of the distutils™* classes to provide common
Python2 support.

6.32. distutils3* .bbclass]

The distutils3* classes support recipes for Python version 3.x extensions, which are simple. These recipes usually
only need to point to the source's archive and then inherit the proper class. Building is split into three methods depending on
which method the module authors used.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

77/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#platdev-appdev-devshell

3/4/2020

Yocto Project Reference Manual

o Extensions that use an Autotools-based build system require Autotools and distutils-based classes in their
recipes.

o Extensions that use distutils-based build systems require the distutils class in their recipes.
o Extensions that use build systems based on setuptools3 require the setuptools3 class in their recipes.

The distutils3* classes either inherit their corresponding distutils™ class or replicate them using a Python3
version instead (e.g. distutils3-base inherits distutils—-common-base, which is the same as
distutils-base butinherits python3native instead of pythonnative).

6.33. externalsrc.bbclass]

The externalsxrc class supports building software from source code that is external to the OpenEmbedded build
system. Building software from an external source tree means that the build system's normal fetch, unpack, and patch
process is not used.

By default, the OpenEmbedded build system uses the S and B variables to locate unpacked recipe source code and to build
it, respectively. When your recipe inherits the external src class, you use the EXTERNATLSRC and
EXTERNALSRC BUTLD variables to ultimately define S and B.

By default, this class expects the source code to support recipe builds that use the B variable to point to the directory in
which the OpenEmbedded build system places the generated objects built from the recipes. By default, the B directory is set
to the following, which is separate from the source directory (S):

${WORKDIR}/${BPN}/{PV}/

See these variables for more information: WORKDIR, BPN, and PV,

For more information on the external src class, see the comments in
meta/classes/externalsrc.bbclass in the Source Directory. For information on how to use the
externalsrc class, see the "Building_Software from an External Source" section in the Yocto Project Development
Tasks Manual.

6.34. extrausers.bbclass

The extrausers class allows additional user and group configuration to be applied at the image level. Inheriting this
class either globally or from an image recipe allows additional user and group operations to be performed using the
EXTRA_USERS_PARAMS variable.

Note

The user and group operations added using the extrausers class are not tied to a specific
recipe outside of the recipe for the image. Thus, the operations can be performed across the image
as a whole. Use the useradd class to add user and group configuration to a specific recipe.

Here is an example that uses this class in an image recipe:

inherit extrausers
EXTRA_USERS_PARAMS = "\
useradd -p '' tester; \
groupadd developers; \
userdel nobody; \
groupdel -g video; \
groupmod -g 1020 developers; \
usermod -s /bin/sh tester; \

Here is an example that adds two users named "tester-jim" and "tester-sue" and assigns passwords:

inherit extrausers

EXTRA_USERS_PARAMS = "\
useradd -P tester@l tester-jim; \
useradd -P tester@l tester-sue; \

Finally, here is an example that sets the root password to "1876*18":
inherit extrausers

EXTRA_USERS_PARAMS = "\
usermod -P 1876*18 root; \

6.35. fontcache.bbclass(

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

78/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#building-software-from-an-external-source

3/4/2020 Yocto Project Reference Manual

The fontcache class generates the proper post-install and post-remove (postinst and postrm) scriptlets for font
packages. These scriptlets call fc—cache (part of Fontconfig) to add the fonts to the font information cache.
Since the cache files are architecture-specific, f c—cache runs using QEMU if the postinst scriptlets need to be run on the
build host during image creation.

If the fonts being installed are in packages other than the main package, set FONT PACKAGES to specify the packages
containing the fonts.

6.36. £fs-uuid.bbclass

The £s—uuid class extracts UUID from $ { ROOTFS }, which must have been built by the time that this function gets
called. The £s—uuid class only works on Xt file systems and depends on tune2fs.

6.37. gconf .bbclass(

The gconf class provides common functionality for recipes that need to install GConf schemas. The schemas will be put
into a separate package ($ {PN} —gconf) that is created automatically when this class is inherited. This package uses
the appropriate post-install and post-remove (postinst/postrm) scriptlets to register and unregister the schemas in the target
image.

6.38. gettext.bbclass(

The gettexXxt class provides support for building software that uses the GNU get text internationalization and
localization system. All recipes building software that use gettext should inherit this class.

6.39. gnomebase .bbclass]

The gnomebase class is the base class for recipes that build software from the GNOME stack. This class sets
SRC_URT to download the source from the GNOME mirrors as well as extending FTLES with the typical GNOME
installation paths.

6.40. gobject-introspection.bbclass

Provides support for recipes building software that supports GObject introspection. This functionality is only enabled if the
"gobject-introspection-data” feature is in DISTRO FEATURES as well as "gemu-usermode" being in
MACHINE_FEATURES.

Note
This functionality is backfilled by default and, if not applicable, should be disabled through
DISTRO FEATURES BACKFILL CONSIDERED or

MACHINE FEATURES BACKEILL CONSIDERED, respectively.

6.41. grub-efi.bbclass

The grub-efi class provides grub—e £ i-specific functions for building bootable images.

This class supports several variables:

o INTITRD: Indicates list of filesystem images to concatenate and use as an initial RAM disk (initrd) (optional).
¢ ROOTF'S: Indicates a filesystem image to include as the root filesystem (optional).

e GRUB GEFXSERTAL: Set this to "1" to have graphics and serial in the boot menu.

e LABFETLS: Alist of targets for the automatic configuration.
o APPEND: An override list of append strings for each LABEL.

« GRUB_OPTS: Additional options to add to the configuration (optional). Options are delimited using semi-colon
characters (;).

e GRUB TIMEOUT: Timeout before executing the default LABEL (optional).

6.42. gsettings.bbclass]

The gsettings class provides common functionality for recipes that need to install GSettings (glib) schemas. The
schemas are assumed to be part of the main package. Appropriate post-install and post-remove (postinst/postrm) scriptlets

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 791235

3/4/2020

Yocto Project Reference Manual

are added to register and unregister the schemas in the target image.

6.43. gtk-doc.bbclass(

The gt k—doc class is a helper class to pull in the appropriate gt k—doc dependencies and disable gt k—doc.

6.44. gtk-icon-cache.bbclass(

The gt k—icon-cache class generates the proper post-install and post-remove (postinst/postrm) scriptlets for
packages that use GTK+ and install icons. These scriptlets call gt k—update—-icon-cache to add the fonts to
GTK+'s icon cache. Since the cache files are architecture-specific, gt k—update—-icon-cache is run using QEMU if
the postinst scriptlets need to be run on the build host during image creation.

6.45. gtk-immodules-cache.bbclass(

The gt k—immodules—cache class generates the proper post-install and post-remove (postinst/postrm) scriptlets
for packages that install GTK+ input method modules for virtual keyboards. These scriptlets call gtk—update—icon—
cache to add the input method modules to the cache. Since the cache files are architecture-specific, gt k—update-
icon—-cache is run using QEMU if the postinst scriptlets need to be run on the build host during image creation.

If the input method modules being installed are in packages other than the main package, set
GTKIMMODULES PACKAGES to specify the packages containing the modules.

6.46. gzipnative.bbclass]

The gzipnative class enables the use of different native versions of gz 1p and pi1gz rather than the versions of
these tools from the build host.

6.47. icecc.bbclass]
The 1icecc class supports Icecream, which facilitates taking compile jobs and distributing them among remote machines.

The class stages directories with symlinks from gCccC and g++ to 1 cecc, for both native and cross compilers. Depending
on each configure or compile, the OpenEmbedded build system adds the directories at the head of the PATH list and then
sets the ICECC_CXX and TICEC _CC variables, which are the paths to the g++ and gccC compilers, respectively.

For the cross compiler, the class creates a tar . gz file that contains the Yocto Project toolchain and sets
ICECC_VERSION, which is the version of the cross-compiler used in the cross-development toolchain, accordingly.

The class handles all three different compile stages (i.e native ,cross-kernel and target) and creates the necessary
environment tar . gz file to be used by the remote machines. The class also supports SDK generation.

If ICECC PATH is not set in your Local . conf file, then the class tries to locate the i cecc binary using
which.1f I CECC_ENV_EXFEC is setin your Local . conf file, the variable should point to the 1cecc—
create—env script provided by the user. If you do not point to a user-provided script, the build system uses the default
script provided by the recipe icecc—-create-env-native.bb.

Note

This script is a modified version and not the one that comes with i cecc.

If you do not want the Icecream distributed compile support to apply to specific recipes or classes, you can effectively
"blacklist" them by listing the recipes and classes using the ICECC USER PACKAGE BL and

ICECC USER CLASS BL, variables, respectively, in your Local.conf file. Doing so causes the
OpenEmt;:dded build system_to handle these compilations locally.

Additionally, you can list recipes using the ICECC _USER PACKAGE WL variable in your local . conf file to
force 1 cecc to be enabled for recipes using an empty PARALLEL MAKE variable.

Inheriting the 1 cecc class changes all sstate signatures. Consequently, if a development team has a dedicated build
system that populates STATE MTIRRORS and they want to reuse sstate from STATE MIRRORS, then all
developers and the build system need to either inherit the 1 cecc class or nobody should.

At the distribution level, you can inherit the 1 cecCcC class to be sure that all builders start with the same sstate signatures.
After inheriting the class, you can then disable the feature by setting the ICECC _DTISABLED variable to "1" as follows:

INHERIT_DISTRO_append = " icecc"
ICECC_DISABLED ??= "1"

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 80/235

https://github.com/icecc/icecream

3/4/2020 Yocto Project Reference Manual

This practice makes sure everyone is using the same signatures but also requires individuals that do want to use Icecream to
enable the feature individually as follows in your Local .conf file:

ICECC_DISABLED = ""

6.48. image .bbclass]

The image class helps support creating images in different formats. First, the root filesystem is created from packages
using one of the root f£s* .bbclass files (depending on the package format used) and then one or more image files
are created.

e The IMAGE FSTYPES variable controls the types of images to generate.

e The IMAGE TINSTALL variable controls the list of packages to install into the image.

For information on customizing images, see the "Customizing_Images" section in the Yocto Project Development Tasks
Manual. For information on how images are created, see the "Images" section in the Yocto Project Overview and Concpets
Manual.

6.49. image-buildinfo.bbclass

The image—-buildinfo class writes information to the target filesystem on /etc/build.

6.50. image_types.bbclass(

The image_types class defines all of the standard image output types that you can enable through the
IMAGE F'STYPES variable. You can use this class as a reference on how to add support for custom image output types.

By default, the 1mage class automatically enables the image types class. The image class uses the
IMGCLASSES variable as follows:
IMGCLASSES = "rootfs_${IMAGE_PKGTYPE} image_types ${IMAGE_CLASSES}"
IMGCLASSES += "${@['populate_sdk_base', 'populate_sdk_ext']['linux' in d.getVar("SDK_0S")]}"
IMGCLASSES += "${@bb.utils.contains_any('IMAGE_FSTYPES', 'live iso hddimg', 'image-live', '', d)}"
IMGCLASSES += "${@bb.utils.contains('IMAGE_FSTYPES', 'container', 'image-container', '', d)}"
IMGCLASSES += "image_types_wic"
IMGCLASSES += "rootfs-postcommands"
IMGCLASSES += "image-postinst-intercepts”
inherit ${IMGCLASSES}

The imageitypes class also handles conversion and compression of images.

Note

To build a VMware VMDK image, you need to add "wic.vmdk" to TMAGE FSTYPES. This would

also be similar for Virtual Box Virtual Disk Image ("vdi") and QEMU Copy On Write Version 2
("qcow2") images.

6.51. image-live.bbclass]

This class controls building "live" (i.e. HDDIMG and ISO) images. Live images contain syslinux for legacy booting, as well as
the bootloader specified by EF'T _PROVIDER if MACHINE FEATURES contains "efi".

Normally, you do not use this class directly. Instead, you add "live" to IMAGE _FSTYPES.

6.52. image-mklibs.bbclass(

The image-mkl1ibs class enables the use of the mk11bs utility during the do_root £s task, which optimizes
the size of libraries contained in the image.

By default, the class is enabled in the 1local.conf.template usingthe USER_CLASSES variable as follows:

USER_CLASSES ?= "buildstats image-mklibs image-prelink"

6.53. image-prelink.bbclassf

The image-prelink class enables the use of the prelink utility during the do_root £s task, which
optimizes the dynamic linking of shared libraries to reduce executable startup time.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 81/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#usingpoky-extend-customimage
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#images-dev-environment

3/4/2020

Yocto Project Reference Manual
By default, the class is enabled in the local.conf.template usingthe USER _CLASSES variable as follows:

USER_CLASSES ?= "buildstats image-mklibs image-prelink"

6.54. insane .bbclass

The insane class adds a step to the package generation process so that output quality assurance checks are generated
by the OpenEmbedded build system. A range of checks are performed that check the build's output for common problems
that show up during runtime. Distribution policy usually dictates whether to include this class.

You can configure the sanity checks so that specific test failures either raise a warning or an error message. Typically,
failures for new tests generate a warning. Subsequent failures for the same test would then generate an error message once
the metadata is in a known and good condition. See the "QA Error and Warning_Messages" Chapter for a list of all the
warning and error messages you might encounter using a default configuration.

Use the WARN QA and ERROR__ QA variables to control the behavior of these checks at the global level (i.e. in your
custom distro configuration). However, to skip one or more checks in recipes, you should use INSANE_SKTIP. For
example, to skip the check for symbolic link . SO files in the main package of a recipe, add the following to the recipe. You
need to realize that the package name override, in this example S { PN}, must be used:

INSANE_SKIP_${PN} += "dev-so"

Please keep in mind that the QA checks exist in order to detect real or potential problems in the packaged output. So
exercise caution when disabling these checks.

The following list shows the tests you can list with the WARN_QA and ERROR_QA variables:

o already-stripped: Checks that produced binaries have not already been stripped prior to the build system
extracting debug symbols. It is common for upstream software projects to default to stripping debug symbols for output
binaries. In order for debugging to work on the target using —dbg packages, this stripping must be disabled.

o arch: Checks the Executable and Linkable Format (ELF) type, bit size, and endianness of any binaries to ensure they
match the target architecture. This test fails if any binaries do not match the type since there would be an incompatibility.
The test could indicate that the wrong compiler or compiler options have been used. Sometimes software, like
bootloaders, might need to bypass this check.

e buildpaths : Checks for paths to locations on the build host inside the output files. Currently, this test triggers too
many false positives and thus is not normally enabled.

o build-deps: Determines if a build-time dependency that is specified through DEPENDS, explicit RDEPENDS,
or task-level dependencies exists to match any runtime dependency. This determination is particularly useful to discover
where runtime dependencies are detected and added during packaging. If no explicit dependency has been specified
within the metadata, at the packaging stage it is too late to ensure that the dependency is built, and thus you can end up
with an error when the package is installed into the image during the do root f's task because the auto-detected
dependency was not satisfied. An example of this would be where the l_Jp_date—rC . d class automatically adds a
dependency on the initscripts—-functions package to packages that install an initscript that refers to
/etc/init.d/functions. The recipe should really have an explicit RDEPENDS for the package in question
oninitscripts—-functions so that the OpenEmbedded build system is able to ensure that the
initscripts recipe is actually built and thus the initscripts—-functions package is made available.

« compile-host-path: Checksthe do_compi le log for indications that paths to locations on the build host
were used. Using such paths might result in host contamination of the build output.

« debug-deps : Checks that all packages except —dbg packages do not depend on —dbg packages, which would
cause a packaging bug.

o debug-files: Checks for . debug directories in anything but the —dbg package. The debug files should all be
in the —dbg package. Thus, anything packaged elsewhere is incorrect packaging.

. dep—cmp: Checks for invalid version comparison statements in runtime dependency relationships between packages
variable values). Any invalid comparisons might trigger failures or undesirable behavior when passed to the package
manager.

o desktop: Runsthe desktop-file-validate program against any . desktop files to validate their
contents against the specification for . desktop files.

o« dev-deps : Checks that all packages except —devV or —staticdev packages do not depend on —dev
packages, which would be a packaging bug.

o dev-so0: Checks that the . SO symbolic links are in the —deV package and not in any of the other packages. In
general, these symlinks are only useful for development purposes. Thus, the —deV package is the correct location for
them. Some very rare cases do exist for dynamically loaded modules where these symlinks are needed instead in the
main package.

o file-rdeps : Checks that file-level dependencies identified by the OpenEmbedded build system at packaging time
are satisfied. For example, a shell script might start with the line # ! /bin/bash. This line would translate to a file
dependency on /bin/bash. of the three package managers that the OpenEmbedded build system supports, only
RPM directly handles file-level dependencies, resolving them automatically to packages providing the files. However, the
lack of that functionality in the other two package managers does not mean the dependencies do not still need resolving.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 82/235

3/4/2020

Yocto Project Reference Manual

This QA check attempts to ensure that explicitly declared RDEPENDS exist to handle any file-level dependency
detected in packaged files.

files-invalid: Checks for ELILES variable values that contain "//", which is invalid.

host-user-contaminated: Checks that no package produced by the recipe contains any files outside of
/home with a user or group ID that matches the user running BitBake. A match usually indicates that the files are
being installed with an incorrect UID/GID, since target IDs are independent from host IDs. For additional information, see
the section describing the do_install task.

incompatible-license : Report when packages are excluded from being created due to being marked with a
license that is in INCOMPAT IBLE_LICENSE.

install-host-path: Checksthe do_install log for indications that paths to locations on the build host
were used. Using such paths might result in host contamination of the build output.

installed-vs-shipped: Reports when files have been installed within do__install but have not been

included in any package by way of the T LLEIS variable. Files that do not appear in any package cannot be present in an
image later on in the build process. Ideally, all installed files should be packaged or not installed at all. These files can be
deleted at the end of do__install if the files are not needed in any package.

invalid-chars: Checks that the recipe metadata variables DESCRIPTION, SUMMARY, LICENSE, and
SECTTION do not contain non-UTF-8 characters. Some package managers do not support such characters.

invalid-packageconfig: Checks that no undefined features are being added to PACKAGECONFETIG. For
example, any name "foo" for which the following form does not exist:

PACKAGECONFIG[fo0] = "..."

la: Checks . la files for any TMPDIR paths. Any . 1 a file containing these paths is incorrect since 1 ibtool
adds the correct sysroot prefix when using the files automatically itself.

ldflags: Ensures that the binaries were linked with the LDELAGS options provided by the build system. If this
test fails, check that the LDEF'LAGS variable is being passed to the linker command.

1libdir: Checks for libraries being installed into incorrect (possibly hardcoded) installation paths. For example, this
test will catch recipes that install /1ib/bar.so when ${base 1libdir} is"lib32". Another example is when
recipes install /usr/1ib64/foo.so when ${1libdir} is "/usr/lib".

libexec : Checks if a package contains files in /usr/libexec. This check is not performed if the
libexecdir variable has been set explicitly to /usr/libexec.

packages-1list: Checks for the same package being listed multiple times through the PACKAGES variable
value. Installing the package in this manner can cause errors during packaging.

perm-config: Reports lines in fs—perms. txt that have an invalid format.
perm-line: Reports lines in £s—perms. txt that have an invalid format.
perm-1link: Reports lines in fs—perms. txt that specify 'link' where the specified target already exists.

perms : Currently, this check is unused but reserved.

pkgconfig: Checks .pc files for any TMPDIR/WORKDIR paths. Any . PC file containing these paths is
incorrect since pkg—conf ig itself adds the correct sysroot prefix when the files are accessed.

pkgname : Checks that all packages in PACKAGES have names that do not contain invalid characters (i.e.
characters other than 0-9, a-z, ., +, and -).

pkgv-undefined: Checks to see if the PKGV variable is undefined during do_package.

pkgvarcheck : Checks through the variables RDEPENDS, RRECOMMENDS, RSUGGESTS,
RCONFLICTS, RPROVIDES, RREPLACES, FILES, ALLOW EMPTY, pkg preinst,

pkg postinst, pkg prermand pkg postrm, and reports if there are variable sets that are not package-
specif?:. Using these variables without a package;ufﬁx is bad practice, and might unnecessarily complicate dependencies
of other packages within the same recipe or have other unintended consequences.

pn-overrides: Checks that a recipe does not have a name (PN) value that appears in OVERRIDES. If a
recipe is named such that its PN value matches something already in OVERRIDES (e.g. PN happens to be the same
as MACHINE or DISTRO), it can have unexpected consequences. For example, assignments such as

FILES S{PN} = "xyz" effectively turninto FILES = "xyz".

rpaths : Checks for rpaths in the binaries that contain build system paths such as TMPDIR. If this test fails, bad —
rpath options are being passed to the linker commands and your binaries have potential security issues.

Spli t—strip: Reports that splitting or stripping debug symbols from binaries has failed.
staticdev: Checks for static library files (* . a) in non-staticdev packages.

symlink-to-sysroot: Checks for symlinks in packages that point into TMPDIR on the host. Such symlinks
will work on the host, but are clearly invalid when running on the target.

textrel : Checks for ELF binaries that contain relocations in their . t&Xt sections, which can result in a
performance impact at runtime. See the explanation for the ELE binary message for more information regarding
runtime performance issues.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

83/235

3/4/2020

Yocto Project Reference Manual

. useless-rpaths: Checks for dynamic library load paths (rpaths) in the binaries that by default on a standard
system are searched by the linker (e.g. /11ib and /usr/11Db). While these paths will not cause any breakage, they
do waste space and are unnecessary.

« var-undefined: Reports when variables fundamental to packaging (i.e. WORKDIR, DEPLOY DIR, D, PN,
and PKGD) are undefined during do_package.

« version-going-backwards : If Build History is enabled, reports when a package being written out has a
lower version than the previously written package under the same name. If you are placing output packages into a feed
and upgrading packages on a target system using that feed, the version of a package going backwards can result in the
target system not correctly upgrading to the "new" version of the package.

Note

If you are not using runtime package management on your target system, then you do not need
to worry about this situation.

o xorg-driver-abi : Checks that all packages containing Xorg drivers have ABI dependencies. The XxServer—
XOX(d recipe provides driver ABI names. All drivers should depend on the ABI versions that they have been built against.
Driver recipes that include xorg—driver—-input.incor xorg-driver-video. inc wil
automatically get these versions. Consequently, you should only need to explicitly add dependencies to binary driver
recipes.

6.55. insserv.bbclass

The 1nSServ class uses the INsserv utility to update the order of symbolic links in /etc/rc?.d/ within an
image based on dependencies specified by LSB headers in the 1nit . d scripts themselves.

6.56. kernel .bbclass

The kernel class handles building Linux kernels. The class contains code to build all kernel trees. All needed headers are
staged into the STAGING KERNEL DIR directory to allow out-of-tree module builds using the module class.

This means that each built kernel module is packaged separately and inter-module dependencies are created by parsing the
modinfo output. If all modules are required, then installing the kernel-modules package installs all packages
with modules and various other kernel packages such as kernel-vmlinux.

The kernel class contains logic that allows you to embed an initial RAM filesystem (initramfs) image when you build the

section in the Yocto Project Development Tasks Manual.

Various other classes are used by the kernel and module classes internally including the kernel-arch,
module-base, and linux-kernel-base classes.

6.57. kernel-arch.bbclassf

The kernel-arch class sets the ARCH environment variable for Linux kernel compilation (including modules).

6.58. kernel-devicetree.bbclass(

The kernel-devicetree class, which is inherited by the kernel class, supports device tree generation.

6.59. kernel-fitimage.bbclass]

The kernel-fitimage class provides support to pack zImages.

6.60. kernel-grub.bbclass(

The kernel-grub class updates the boot area and the boot menu with the kernel as the priority boot mechanism while
installing a RPM to update the kernel on a deployed target.

6.61. kernel-module-split.bbclass(

The kernel-module-split class provides common functionality for splitting Linux kernel modules into separate
packages.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

84/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#building-an-initramfs-image

3/4/2020 Yocto Project Reference Manual

6.62. kernel-uboot.bbclass]

The kernel-uboot class provides support for building from vmlinux-style kernel sources.

6.63. kernel-uimage.bbclassf

The kernel-uimage class provides support to pack ulmage.

6.64. kernel-yocto.bbclass]

The kernel—yocto class provides common functionality for building from linux-yocto style kernel source repositories.

6.65. kernelsrc.bbclass(

The kernelsrc class sets the Linux kernel source and version.

6.66. 1ib_package.bbclassf

The lib_package class supports recipes that build libraries and produce executable binaries, where those binaries
should not be installed by default along with the library. Instead, the binaries are added to a separate S{PN}-bin
package to make their installation optional.

6.67. 1libc* .bbclass]
The 1ibc™* classes support recipes that build packages with 1 ibc:
e« The 1ibc—common class provides common support for building with 1 ibc.

e The libc-package class supports packaging up glibc and eglibc.

6.68. license.bbclass

The 1icense class provides license manifest creation and license exclusion. This class is enabled by default using the
default value for the INHERTT DI STRO variable.

6.69. linux-kernel-base.bbclass]

The 1inux—-kernel-base class provides common functionality for recipes that build out of the Linux kernel source
tree. These builds goes beyond the kernel itself. For example, the Perf recipe also inherits this class.

6.70. linuxloader .bbclass]

Provides the function 1 inuxloader (), which gives the value of the dynamic loader/linker provided on the platform.
This value is used by a number of other classes.

6.71. logging.bbclass]

The 10gging class provides the standard shell functions used to log messages for various BitBake severity levels (i.e.

bbplain, bbnote, bbwarn, bberror, bbfatal, and bbdebug).

This class is enabled by default since it is inherited by the base class.

6.72. meta.bbclassf

The meta class is inherited by recipes that do not build any output packages themselves, but act as a "meta" target for
building other recipes.

6.73. metadata_scm.bbclass(

The metadata_s Cm class provides functionality for querying the branch and revision of a Source Code Manager (SCM)
repository.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 85/235

3/4/2020

Yocto Project Reference Manual

The base class uses this class to print the revisions of each layer before starting every build. The metadatais cm
class is enabled by default because it is inherited by the base class.

6.74. migrate localcount.bbclass(

The migrate_localcount class verifies a recipe's localcount data and increments it appropriately.

6.75. mime .bbclass

The mime class generates the proper post-install and post-remove (postinst/postrm) scriptlets for packages that install
MIME type files. These scriptlets call update-mime-database to add the MIME types to the shared database.

6.76. mirrors.bbclassf

The mirrors class sets up some standard MTRRORS entries for source code mirrors. These mirrors provide a fall-back
path in case the upstream source specified in SRC__URT within recipes is unavailable.

This class is enabled by default since it is inherited by the base class.

6.77. module .bbclass

The module class provides support for building out-of-tree Linux kernel modules. The class inherits the module—
base and kernel-module-split classes, and implements the do_compile and do_install tasks.
The class provides everything needed to build and package a kernel module.

For general information on out-of-tree Linux kernel modules, see the "Incorporating Out-of-Tree Modules" section in the
Yocto Project Linux Kernel Development Manual.

6.78. module-base .bbclass]

The module-base class provides the base functionality for building Linux kernel modules. Typically, a recipe that builds
software that includes one or more kernel modules and has its own means of building the module inherits this class as
opposed to inheriting the modu le class.

6.79. multilib* .bbclass

Themultilib™* classes provide support for building libraries with different target optimizations or target architectures
and installing them side-by-side in the same image.

For more information on using the Multilib feature, see the "Combining_Multiple Versions of Library Files into One Image"
section in the Yocto Project Development Tasks Manual.

6.80. native .bbclass

The native class provides common functionality for recipes that build tools to run on the build host (i.e. tools that use
the compiler or other tools from the build host).

You can create a recipe that builds tools that run natively on the host a couple different ways:

e Create a myrecipe—native .Dbb recipe that inherits the nat ive class. If you use this method, you must order the
inherit statement in the recipe after all other inherit statements so that the nat ive class is inherited last.

Warning

When creating a recipe this way, the recipe name must follow this naming convention:

myrecipe-native.bb

Not using this naming convention can lead to subtle problems caused by existing code that
depends on that naming convention.

e Create or modify a target recipe that contains the following:

BBCLASSEXTEND = "native"

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

86/235

http://www.yoctoproject.org/docs/3.1/kernel-dev/kernel-dev.html#incorporating-out-of-tree-modules
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#combining-multiple-versions-library-files-into-one-image

3/4/2020

Yocto Project Reference Manual

Inside the recipe, use 7class—native and 7ClaS s—target overrides to specify any functionality specific to
the respective native or target case.

Although applied differently, the nat ive class is used with both methods. The advantage of the second method is that
you do not need to have two separate recipes (assuming you need both) for native and target. All common parts of the
recipe are automatically shared.

6.81. nativesdk.bbclass

The nativesdk class provides common functionality for recipes that wish to build tools to run as part of an SDK (i.e.
tools that run on SDKMACHTINE).

You can create a recipe that builds tools that run on the SDK machine a couple different ways:

e Create a nativesdk—myrecipe . Db recipe that inherits the nat ivesdk class. If you use this method, you must
order the inherit statement in the recipe after all other inherit statements so that the nat ivesdk class is inherited
last.

s Create a nativesdk variant of any recipe by adding the following:
BBCLASSEXTEND = "nativesdk"

Inside the recipe, use _class-nativesdkand class-target overrides to specify any functionality
specific to the respective SDK machine or target case.

Warning

When creating a recipe, you must follow this naming convention:

nativesdk-myrecipe.bb

Not doing so can lead to subtle problems because code exists that depends on the naming
convention.

Although applied differently, the nativesdk class is used with both methods. The advantage of the second method is
that you do not need to have two separate recipes (assuming you need both) for the SDK machine and the target. All
common parts of the recipe are automatically shared.

6.82. nopackages.bbclass]

Disables packaging tasks for those recipes and classes where packaging is not needed.

6.83. npm.bbclass

Provides support for building Node.js software fetched using the node package manager (NPM).

Note

Currently, recipes inheriting this class must use the npm: / / fetcher to have dependencies
fetched and packaged automatically.

For information on how to create NPM packages, see the "Creating_ Node Package Manager (NPM)_Packages" section in the
Yocto Project Development Tasks Manual.

6.84. coelint.bbclassf
The oelint class is an obsolete lint checking tool that exists in meta/classes in the Source Directory.

A number of classes exist that could be generally useful in OE-Core but are never actually used within OE-Core itself. The
oelint class is one such example. However, being aware of this class can reduce the proliferation of different versions of
similar classes across multiple layers.

6.85. own-mirrors.bbclass(

The own—-mirrors class makes it easier to set up your own PREMTRRORS from which to first fetch source before
attempting to fetch it from the upstream specified in SRC__URT within each recipe.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 87/235

https://en.wikipedia.org/wiki/Npm_(software)
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#creating-node-package-manager-npm-packages

3/4/2020

Yocto Project Reference Manual

To use this class, inherit it globally and specify SOURCE _MIRROR_URL. Here is an example:

INHERIT += "own-mirrors"
SOURCE_MIRROR_URL = "http://example.com/my-source-mirror"

You can specify only a single URL in SOURCE MIRROR URL.

6.86. package .bbclass

The package class supports generating packages from a build's output. The core generic functionality is in
package.bbclass. The code specific to particular package types resides in these package-specific classes:
rackage deb, package rpm, package ipk, and package tar.

Warning
The packageitar class is broken and not supported. It is recommended that you do not use
this class.

You can control the list of resulting package formats by using the PACKAGE CLASSKS variable defined in your
conf/local.conf configuration file, which is located in the Build Directory. When defining the variable, you can
specify one or more package types. Since images are generated from packages, a packaging class is needed to enable image
generation. The first class listed in this variable is used for image generation.

If you take the optional step to set up a repository (package feed) on the development host that can be used by DNF, you
can install packages from the feed while you are running the image on the target (i.e. runtime installation of packages). For
more information, see the "Using_Runtime Package Management" section in the Yocto Project Development Tasks Manual.

The package-specific class you choose can affect build-time performance and has space ramifications. In general, building a
package with IPK takes about thirty percent less time as compared to using RPM to build the same or similar package. This
comparison takes into account a complete build of the package with all dependencies previously built. The reason for this
discrepancy is because the RPM package manager creates and processes more Metadata than the IPK package manager.
Consequently, you might consider setting PACKAGE CLASSES to "package_ipk" if you are building smaller systems.

Before making your package manager decision, however, you should consider some further things about using RPM:

e RPM starts to provide more abilities than IPK due to the fact that it processes more Metadata. For example, this
information includes individual file types, file checksum generation and evaluation on install, sparse file support, conflict
detection and resolution for Multilib systems, ACID style upgrade, and repackaging abilities for rollbacks.

e For smaller systems, the extra space used for the Berkeley Database and the amount of metadata when using RPM can
affect your ability to perform on-device upgrades.

You can find additional information on the effects of the package class at these two Yocto Project mailing list links:

e https://lists.yoctoproject.org/pipermail/poky/2011-May/006362.html

e https://lists.yoctoproject.org/pipermail/poky/2011-May/006363.html

6.87. package_deb.bbclass]

The package deb class provides support for creating packages that use the Debian (i.e. . deb) file format. The class
ensures the packages are written out in a . deb file format to the $ { DE PLOY DIR DEB} directory.

This class inherits the package class and is enabled through the PACKAGE CLASSES variable in the
local.conf file.

6.88. package ipk.bbclass(

The package_ipk class provides support for creating packages that use the IPK (i.e. . 1pk) file format. The class
ensures the packages are written out in a . 1pX file format to the $ { DE PLOY DIR T PK} directory.

This class inherits the package class and is enabled through the PACKAGE CLASSES variable in the
local.conf file.

6.89. package_rpm.bbclass(

The package_rpm class provides support for creating packages that use the RPM (i.e. . rpom) file format. The class
ensures the packages are written out in a . ¥ pm file format to the $ { DE PLOY_DIR_RPM} directory.

This class inherits the package class and is enabled through the PACKAGE CLASSES variable in the
local.conf file.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

88/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#using-runtime-package-management
http://lists.yoctoproject.org/pipermail/poky/2011-May/006362.html
http://lists.yoctoproject.org/pipermail/poky/2011-May/006363.html

3/4/2020

Yocto Project Reference Manual

6.90. package_tar.bbclass(

The packageitar class provides support for creating tarballs. The class ensures the packages are written out in a
tarball format to the $ { DEPLOY DIR TAR} directory.

This class inherits the package class and is enabled through the PACKAGE CLASSES variable in the
local.conf file.

Note
You cannot specify the package tar class first using the PACKAGE CLASSES variable.
You must use . deb, .1pXk, or . rpm file formats for your image or SDK.

6.91. packagedata.bbclass(

The packagedata class provides common functionality for reading pkgdata files found in PKGDATA DIR.
These files contain information about each output package produced by the OpenEmbedded build system.

This class is enabled by default because it is inherited by the package class.

6.92. packagegroup.bbclass]

The packagegroup class sets default values appropriate for package group recipes (e.g. PACKAGES,
PACKAGE ARCH, ALLOW_EMPTY, and so forth). It is highly recommended that all package group recipes inherit
this class.

For information on how to use this class, see the "Customizing Images Using Custom Package Groups" section in the Yocto
Project Development Tasks Manual.

Previously, this class was called the task class.

6.93. patch.bbclass

The patch class provides all functionality for applying patches during the doipatch task.

This class is enabled by default because it is inherited by the base class.

6.94. perlnative.bbclass]

When inherited by a recipe, the perlnative class supports using the native version of Perl built by the build system
rather than using the version provided by the build host.

6.95. pixbufcache .bbclass(

The pixbufcache class generates the proper post-install and post-remove (postinst/postrm) scriptlets for packages
that install pixbuf loaders, which are used with gdk—pixbuf. These scriptlets call update pixbuf cacheto
add the pixbuf loaders to the cache. Since the cache files are architecture-specific, update pixbuf cacheisrun
using QEMU if the postinst scriptlets need to be run on the build host during image creation. a o

If the pixbuf loaders being installed are in packages other than the recipe's main package, set PIXBUF PACKAGES to
specify the packages containing the loaders.

6.96. pkgconfig.bbclass]

The pkgconfig class provides a standard way to get header and library information by using pkg—config. This
class aims to smooth integration of pkg—config into libraries that use it.

During staging, BitBake installs pkg—config data into the sy s roots/ directory. By making use of sysroot
functionality within pkg—config, the pkgconfig class no longer has to manipulate the files.

6.97. populate_sdk.bbclass(

The populateisdk class provides support for SDK-only recipes. For information on advantages gained when building
a cross-development toolchain using the do_populate sdk task, see the "Building_an SDK Installer" section in the
Yocto Project Application Development and the Extensible Software Development Kit (eSDK) manual.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 89/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#usingpoky-extend-customimage-customtasks
http://www.yoctoproject.org/docs/3.1/sdk-manual/sdk-manual.html#sdk-building-an-sdk-installer

3/4/2020

Yocto Project Reference Manual

6.98. populate_sdk_*.bbclass(
The populate sdk * classes support SDK creation and consist of the following classes:

. populate_sdk_base: The base class supporting SDK creation under all package managers (i.e. DEB, RPM, and
opkg).

« populate_ sdk deb: Supports creation of the SDK given the Debian package manager.

« populate sdk_rpm: Supports creation of the SDK given the RPM package manager.

« populate sdk ipk: Supports creation of the SDK given the opkg (IPK format) package manager.
. populate_sdk_ext: Supports extensible SDK creation under all package managers.

The populate sdk base class inherits the appropriate populate sdk * (i.e. deb, rpm, and ipk)
based on IMAGFE,_PKGTYPE.

The base class ensures all source and destination directories are established and then populates the SDK. After populating
the SDK, the populate sdk base class constructs two sysroots: S SDK_ARCH} -nativesdk, which
contains the cross-compiler and associated tooling, and the target, which contains a target root filesystem that is configured
for the SDK usage. These two images reside in SDK_OUTPUT, which consists of the following:

${SDK_OUTPUT}/${SDK_ARCH}-nativesdk-pkgs
${SDK_OUTPUT}/${SDKTARGETSYSROOT}/target-pkgs

Finally, the base populate SDK class creates the toolchain environment setup script, the tarball of the SDK, and the installer.

The respective populate sdk deb, populate sdk rpm,and populate sdk ipk classes each
support the specific type of SDK. These classes are inherited by and used with the populate sdk base class.

For more information on the cross-development toolchain generation, see the "Cross-Development Toolchain Generation"
section in the Yocto Project Overview and Concepts Manual. For information on advantages gained when building a cross-
development toolchain using the dOo_populate sdk task, see the "Building an SDK Installer" section in the Yocto
Project Application Development and the Extensible Software Development Kit (eSDK) manual.

6.99. prexport.bbclass

The prexport class provides functionality for exporting PR values.

Note
This class is not intended to be used directly. Rather, it is enabled when using "bitbake-
prserv-tool export".

6.100. primport.bbclassf

The primport class provides functionality for importing PR values.

Note

This class is not intended to be used directly. Rather, it is enabled when using "bitbake-
prserv-tool import"

6.101. prserv.bbclass]

The Prserv class provides functionality for using a PR service in order to automatically manage the incrementing of the
PR variable for each recipe.

This class is enabled by default because it is inherited by the package class. However, the OpenEmbedded build system
will not enable the functionality of this class unless PRSERV_HOST has been set.

6.102. ptest.bbclass]

The ptest class provides functionality for packaging and installing runtime tests for recipes that build software that
provides these tests.

This class is intended to be inherited by individual recipes. However, the class' functionality is largely disabled unless "ptest"
appears in DISTRO _FEATURES. See the "Testing_Packages With ptest" section in the Yocto Project Development Tasks
Manual for more information on ptest.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

90/235

http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#cross-development-toolchain-generation
http://www.yoctoproject.org/docs/3.1/sdk-manual/sdk-manual.html#sdk-building-an-sdk-installer
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#working-with-a-pr-service
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#testing-packages-with-ptest

3/4/2020

Yocto Project Reference Manual

6.103. ptest-gnome .bbclass

Enables package tests (ptests) specifically for GNOME packages, which have tests intended to be executed with gnome—
desktop-testing.

For information on setting up and running ptests, see the "Testing_Packages With ptest" section in the Yocto Project
Development Tasks Manual.

6.104. python-dir.bbclass]

The python—dir class provides the base version, location, and site package location for Python.

6.105. python3native.bbclass(

The python3native class supports using the native version of Python 3 built by the build system rather than support
of the version provided by the build host.

6.106. pythonnative.bbclassf

When inherited by a recipe, the pythonnative class supports using the native version of Python built by the build
system rather than using the version provided by the build host.

6.107. gemu .bbclass

The gemu class provides functionality for recipes that either need QEMU or test for the existence of QEMU. Typically, this
class is used to run programs for a target system on the build host using QEMU's application emulation mode.

6.108. recipe_sanity.bbclassf

The recipe_s anity class checks for the presence of any host system recipe prerequisites that might affect the build
(e.g. variables that are set or software that is present).

6.109. relocatable.bbclass]
The relocatalble class enables relocation of binaries when they are installed into the sysroot.

This class makes use of the chrpath class and is used by both the Cr0ss and native classes.

6.110. remove-libtool .bbclass

The remove—-11ibtool class adds a post function to the do_install task to remove all . 1a files installed by
libtool. Removing these files results in them being absent from both the sysroot and target packages.

If a recipe needs the . 1 a files to be installed, then the recipe can override the removal by setting
REMOVE LIBTOOL LA to "0" as follows:

REMOVE_LIBTOOL_LA = "0@"

Note

The remove—-1ibtool class is not enabled by default.

6.111. report-error.bbclass(

The report—error class supports enabling the error reporting_tool, which allows you to submit build error information
to a central database.

The class collects debug information for recipe, recipe version, task, machine, distro, build system, target system, host
distro, branch, commit, and log. From the information, report files using a JSON format are created and stored in
${LOG _DIR}/error-report.

6.112. rm_work.bbclassf

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 91/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#testing-packages-with-ptest
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#using-the-error-reporting-tool

3/4/2020 Yocto Project Reference Manual

The rmﬁwork class supports deletion of temporary workspace, which can ease your hard drive demands during builds.

The OpenEmbedded build system can use a substantial amount of disk space during the build process. A portion of this
space is the work files under the $ { TMPDIR} /work directory for each recipe. Once the build system generates the
packages for a recipe, the work files for that recipe are no longer needed. However, by default, the build system preserves
these files for inspection and possible debugging purposes. If you would rather have these files deleted to save disk space as
the build progresses, you can enable rm_wWoOXrXk by adding the following to your Local . conf file, which is found in
the Build Directory.

INHERIT += "rm_work"

If you are modifying and building source code out of the work directory for a recipe, enabling rm work will potentially
result in your changes to the source being lost. To exclude some recipes from having their work directories deleted by

rm work, you can add the names of the recipe or recipes you are working on to the RM WORK EXCLUDE variable,
which can also be set in your Local .conf file. Here is an example: a o

RM_WORK_EXCLUDE += "busybox glibc"

6.113. rootfs* .bbclassf

The root £s* classes support creating the root filesystem for an image and consist of the following classes:

e The rootfs—postcommands class, which defines filesystem post-processing functions for image recipes.
e The rootfs deb class, which supports creation of root filesystems for images built using . deb packages.
e The rootfs_rpm class, which supports creation of root filesystems for images built using . rom packages.
e The rootfs_ipk class, which supports creation of root filesystems for images built using . ipk packages.

e The rootfsdebugfiles class, which installs additional files found on the build host directly into the root
filesystem.

The root filesystem is created from packages using one of the root fs* .bbclass files as determined by the
PACKAGE CLASSES variable.

For information on how root filesystem images are created, see the "Image Generation" section in the Yocto Project
Overview and Concepts Manual.

6.114. sanity.bbclass]

The sanity class checks to see if prerequisite software is present on the host system so that users can be notified of
potential problems that might affect their build. The class also performs basic user configuration checks from the
local.conf configuration file to prevent common mistakes that cause build failures. Distribution policy usually
determines whether to include this class.

6.115. scons.bbclassf

The sSCcoOns class supports recipes that need to build software that uses the SCons build system. You can use the
EXTRA OESCONS variable to specify additional configuration options you want to pass SCons command line.

6.116. sdl .bbclass]

The sd1 class supports recipes that need to build software that uses the Simple DirectMedia Layer (SDL) library.

6.117. setuptools.bbclass

The setuptools class supports Python version 2.x extensions that use build systems based on setuptools. If
your recipe uses these build systems, the recipe needs to inherit the setuptools class.

6.118. setuptools3.bbclassf

The setuptools3 class supports Python version 3.x extensions that use build systems based on setuptools3.
If your recipe uses these build systems, the recipe needs to inherit the setuptools3 class.

6.119. sign_rpm.bbclass(

The Sign_rpm class supports generating signed RPM packages.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 92/235

http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#image-generation-dev-environment

3/4/2020 Yocto Project Reference Manual

6.120. sip.bbclass]

The s1p class supports recipes that build or package SIP-based Python bindings.

6.121. siteconfig.bbclass]

The siteconfig class provides functionality for handling site configuration. The class is used by the autotools
class to accelerate the do_configure task.

6.122. siteinfo.bbclassf

The siteinfo class provides information about the targets that might be needed by other classes or recipes.

As an example, consider Autotools, which can require tests that must execute on the target hardware. Since this is not
possible in general when cross compiling, site information is used to provide cached test results so these tests can be
skipped over but still make the correct values available. The meta/site directory contains test results sorted
into different categories such as architecture, endianness, and the 1 i1oC used. Site information provides a list of files
containing data relevant to the current build in the CONF' TG _STTE variable that Autotools automatically picks up.

The class also provides variables like STITETNFO ENDIANNESS and SITETINFO_BTITS that can be used
elsewhere in the metadata.

6.123. spdx.bbclass]

The Sde class integrates real-time license scanning, generation of SPDX standard output, and verification of license
information during the build.

Note

This class is currently at the prototype stage in the 1.6 release.

6.124. sstate.bbclass]

The sstate class provides support for Shared State (sstate). By default, the class is enabled through the
INHERTT DISTRO variable's default value.

For more information on sstate, see the "Shared State Cache" section in the Yocto Project Overview and Concepts Manual.

6.125. staging.bbclassf

The Staging class installs files into individual recipe work directories for sysroots. The class contains the following key
tasks:

e The do_pgpulate_s Y. STrOOt task, which is responsible for handing the files that end up in the recipe sysroots.

e Thedo prepare recipe sysSroot task (a "partner" task to the populate sysroot task), which

installs the files into the individual recipe work directories (i.e. WORKDIR).

The code in the Staging class is complex and basically works in two stages:

e Stage One: The first stage addresses recipes that have files they want to share with other recipes that have
dependencies on the originating recipe. Normally these dependencies are installed through the do_install task
into ${D}.The do_populate sysroot task copies a subset of these files into
S{SYSROOT DESTDIR}. This subset of files is controlled by the SYSROOT DIRS,
SYSROOT_DTRS_NAT IVE, and SYSROOT DIRS BLACKLIST variables.

Note
Additionally, a recipe can customize the files further by declaring a processing function in the
SYSROOT_PREPROCESS_FUNCS variable.

A shared state (sstate) object is built from these files and the files are placed into a subdirectory of
tmp/sysroots-components/. The files are scanned for hardcoded paths to the original installation location.
If the location is found in text files, the hardcoded locations are replaced by tokens and a list of the files needing such
replacements is created. These adjustments are referred to as "FIXMEs". The list of files that are scanned for paths is
controlled by the SSTATE SCAN FTLES variable.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 93/235

http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#shared-state-cache

3/4/2020 Yocto Project Reference Manual

e Stage Two: The second stage addresses recipes that want to use something from another recipe and declare a
dependency on that recipe through the DEPENDS variable. The recipe will have a
do prepare recipe sysroot task and when this task executes, it creates the recipe—-sysroot

and recipe-sysroot-native in the recipe work directory (i.e. WORKDTIR). The OpenEmbedded build
system creates hard links to copies of the relevant files from Sysroots—components into the recipe work
directory.

Note

If hard links are not possible, the build system uses actual copies.

The build system then addresses any "FIXMEs" to paths as defined from the list created in the first stage.

Finally, any files in $ {lbbindir} within the sysroot that have the prefix "post inst—" are executed.

Note

Although such sysroot post installation scripts are not recommended for general use, the files do
allow some issues such as user creation and module indexes to be addressed.

Because recipes can have other dependencies outside of DEPENDS (e.g. do unpack[depends] +=
"tar-native:do populate sysroot"), the sysroot creation function

extend recipe Eys TOOt is also added as a pre-function for those tasks whose dependencies are not through
DEPENDS but operatg similarly.

When installing dependencies into the sysroot, the code traverses the dependency graph and processes dependencies in
exactly the same way as the dependencies would or would not be when installed from sstate. This processing means, for
example, a native tool would have its native dependencies added but a target library would not have its dependencies
traversed or installed. The same sstate dependency code is used so that builds should be identical regardless of whether
sstate was used or not. For a closer look, see the setscene_depvalid () function in the sstate class.

The build system is careful to maintain manifests of the files it installs so that any given dependency can be installed as
needed. The sstate hash of the installed item is also stored so that if it changes, the build system can reinstall it.

6.126. syslinux.bbclassf
The syslinux class provides syslinux-specific functions for building bootable images.
The class supports the following variables:

¢ INTITRD: Indicates list of filesystem images to concatenate and use as an initial RAM disk (initrd). This variable is
optional.

¢ ROOTF'S: Indicates a filesystem image to include as the root filesystem. This variable is optional.

e AUTO SYSTINUXMENU: Enables creating an automatic menu when set to "1".

o LABELS: Lists targets for automatic configuration.

o APPEND: Lists append string overrides for each label.

o« SYSLINUX OPTS: Lists additional options to add to the syslinux file. Semicolon characters separate multiple
options.

e SYSLINUX SPLASH: Lists a background for the VGA boot menu when you are using the boot menu.

e SYSLINUX DEFAULT CONSOLE: Set to "console=ttyX" to change kernel boot default console.

e SYSLINUX SERTIAL: Sets an alternate serial port. Or, turns off serial when the variable is set with an empty string.

o SYSLINUX SERTIATL_TTY: Sets an alternate "console=tty..." kernel boot argument.

6.127. systemd.bbclass]
The Systemd class provides support for recipes that install systemd unit files.

The functionality for this class is disabled unless you have "systemd" in DISTRO_FEATURES.

Under this class, the recipe or Makefile (i.e. whatever the recipe is calling during the doiinstall task) installs unit
filesinto ${D} S {systemd unitdir} / system. If the unit files being installed go into packages other than the
main package, you need to set SYSTEMD PACKAGES in your recipe to identify the packages in which the files will be
installed.

You should set SYSTEMD SERVICE to the name of the service file. You should also use a package name override to
indicate the package to which the value applies. If the value applies to the recipe's main package, use $ { PN }. Here is an

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 94/235

3/4/2020 Yocto Project Reference Manual
example from the connman recipe:

SYSTEMD_SERVICE_${PN} = "connman.service"

Services are set up to start on boot automatically unless you have set SYSTEMD AUTO_ ENABLE to "disable".

For more information on systemd, see the "Selecting_an Initialization Manager" section in the Yocto Project Development
Tasks Manual.

6.128. systemd-boot.bbclass(

The Systemd—boot class provides functions specific to the systemd-boot bootloader for building bootable images. This
is an internal class and is not intended to be used directly.

Note
The systemd-boot class is a result from merging the gummiboot class used in previous
Yocto Project releases with the systemd project.

Set the EF'T _PROVIDER variable to "systemd-boot" to use this class. Doing so creates a standalone EFI bootloader that
is not dependent on systemd.

For information on more variables used and supported in this class, see the SYSTEMD BOOT CFG,
SYSTEMD_BOOT ENTRIES, and SYSTEMD BOOT_ TIMEOQOUT variables.

You can also see the Systemd-boot documentation for more information.

6.129. terminal .bbclassf

The terminal class provides support for starting a terminal session. The OFE_TERMINAL variable controls which
terminal emulator is used for the session.

Other classes use the terminal class anywhere a separate terminal session needs to be started. For example, the
patch class assuming PATCHRESOLVE is set to "user", the cm1 1 class, and the devshell class all use the
terminal class.

6.130. testimage* .bbclass]

The testimage* classes support running automated tests against images using QEMU and on actual hardware. The
classes handle loading the tests and starting the image. To use the classes, you need to perform steps to set up the
environment.

Tip
Best practices include using IMAGE _CLASSES rather than INHERTT to inherit the
testimage class for automated image testing.

The tests are commands that run on the target system over Ssh. Each test is written in Python and makes use of the
unittest module.

The testimage.bbclass runs tests on an image when called using the following:
$ bitbake -c testimage image

The testimage—auto class runs tests on an image after the image is constructed (i.e. TEST IMAGE _AUTO must
be set to "1").

For information on how to enable, run, and create new tests, see the "Performing Automated Runtime Testing" section in the
Yocto Project Development Tasks Manual.

6.131. testsdk.bbclass]

This class supports running automated tests against software development kits (SDKs). The test sdk class runs tests on
an SDK when called using the following:

$ bitbake -c testsdk image

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 95/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#selecting-an-initialization-manager
http://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#performing-automated-runtime-testing

3/4/2020

Yocto Project Reference Manual

Tip
Best practices include using IMAGE _CLASSES rather than INHERTT to inherit the
testsdk class for automated SDK testing.

6.132. texinfo.bbclass

This class should be inherited by recipes whose upstream packages invoke the texinfo utilities at build-time. Native and
cross recipes are made to use the dummy scripts provided by texinfo-dummy-native, for improved
performance. Target architecture recipes use the genuine Texinfo utilities. By default, they use the Texinfo utilities on the
host system.

Note
If you want to use the Texinfo recipe shipped with the build system, you can remove "texinfo-
native" from ASSUME_ PROVIDED and makeinfo from

SANITY REQUIRED UTILITTIES.

6.133. tinderclient.bbclass]

The tinderclient class submits build results to an external Tinderbox instance.

Note

This class is currently unmaintained.

6.134. toaster.bbclass]

The toaster class collects information about packages and images and sends them as events that the BitBake user
interface can receive. The class is enabled when the Toaster user interface is running.

This class is not intended to be used directly.

6.135. toolchain-scripts.bbclass(

The toolchain-scripts class provides the scripts used for setting up the environment for installed SDKs.

6.136. typecheck .bbclass

The type check class provides support for validating the values of variables set at the configuration level against their
defined types. The OpenEmbedded build system allows you to define the type of a variable using the "type" varflag. Here is
an example:

IMAGE_FEATURES[type] = "list"

6.137. uboot-config.bbclass]

The uboot-config class provides support for U-Boot configuration for a machine. Specify the machine in your recipe
as follows:

UBOOT_CONFIG ??= <default>
UBOOT_CONFIG[foo] = "config,images"

You can also specify the machine using this method:

UBOOT_MACHINE = "config"

See the UBOOT CONF'TG and UBOOT MACHTINE variables for additional information.

6.138. uninative.bbclass

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 96/235

3/4/2020

Yocto Project Reference Manual

Attempts to isolate the build system from the host distribution's C library in order to make re-use of native shared state
artifacts across different host distributions practical. With this class enabled, a tarball containing a pre-built C library is
downloaded at the start of the build. In the Poky reference distribution this is enabled by default through
meta/conf/distro/include/yocto-uninative. inc. Other distributions that do not derive from
poky can also "require conf/distro/include/yocto-uninative.inc" to use this. Alternatively
if you prefer, you can build the uninative-tarball recipe yourself, publish the resulting tarball (e.g. via HTTP) and set
UNINATIVE URL and UNINATIVE CHECKSUM appropriately. For an example, see the
meta/conf/distro/include/yocto-uninative.inc.

The uninative class is also used unconditionally by the extensible SDK. When building the extensible SDK,
uninative-tarball is built and the resulting tarball is included within the SDK.

6.139. update-alternatives.bbclass

The update-alternatives class helps the alternatives system when multiple sources provide the same
command. This situation occurs when several programs that have the same or similar function are installed with the same
name. For example, the @ command is available from the busybox, binutils and el futils packages. The
update—alternatives class handles renaming the binaries so that multiple packages can be installed without
conflicts. The ar command still works regardless of which packages are installed or subsequently removed. The class
renames the conflicting binary in each package and symlinks the highest priority binary during installation or removal of
packages.

To use this class, you need to define a number of variables:

o ALTERNATIVE

o ALTERNATIVE LINK NAME
e ALTERNATIVE TARGET
o ALTERNATIVE PRTIORITY

These variables list alternative commands needed by a package, provide pathnames for links, default links for targets, and
so forth. For details on how to use this class, see the comments in the update-alternatives.bbclass file.

Note

You can use the update—-alternatives command directly in your recipes. However, this
class simplifies things in most cases.

6.140. update-rc.d.bbclass

The update—-rc.d class uses update—rc . d to safely install an initialization script on behalf of the package. The
OpenEmbedded build system takes care of details such as making sure the script is stopped before a package is removed
and started when the package is installed.

Three variables control this class: INTTSCRTPT PACKAGES, INTTSCRIPT NAME and
INTTSCRIPT PARAMS. See the variable links for details.

6.141. useradd* .bbclassf

The useradd* classes support the addition of users or groups for usage by the package on the target. For example, if
you have packages that contain system services that should be run under their own user or group, you can use these classes
to enable creation of the user or group. The meta—-skeleton/recipes-
skeleton/useradd/useradd-example.bb recipe in the Source Directory provides a simple example that
shows how to add three users and groups to two packages. See the useradd-example .bb recipe for more
information on how to use these classes.

The useradd_base class provides basic functionality for user or groups settings.

The useradd* classes support the USERADD PACKAGES, USERADD PARAM, GROUPADD PARAM, and
GROUPMEMS PARAM variables.

The useradd-staticids class supports the addition of users or groups that have static user identification (uid)
and group identification (gid) values.

The default behavior of the OpenEmbedded build system for assigning uid and gid values when packages add users and
groups during package install time is to add them dynamically. This works fine for programs that do not care what the values
of the resulting users and groups become. In these cases, the order of the installation determines the final uid and gid
values. However, if non-deterministic uid and gid values are a problem, you can override the default, dynamic
application of these values by setting static values. When you set static values, the OpenEmbedded build system looks in
BBPATH for files/passwdand files/group files for the values.

To use static uid and gid values, you need to set some variables. See the USERADDEXTENSTON,
USERADD UID TABLES, USERADD GID TABLES, and USERADD ERROR DYNAMIC variables. You

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

97/235

http://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/meta/classes/update-alternatives.bbclass

3/4/2020

Yocto Project Reference Manual

can also see the useradd class for additional information.

Notes

You do not use the useradd-staticids class directly. You either enable or disable the
class by setting the USERADDEXTENSION variable. If you enable or disable the class in a
configured system, TMPDTIR might contain incorrect U1 d and gid values. Deleting the

TMPDIR directory will correct this condition.

6.142. utility-tasks.bbclass]

The utility—tasks class provides support for various "utility" type tasks that are applicable to all recipes, such as

do cleananddo listtasks

This class is enabled by default because it is inherited by the base class.

6.143. utils.bbclass

The utils class provides some useful Python functions that are typically used in inline Python expressions (e.g.

S{@...}). Oneexampleuseisforbb.utils.contains ().

This class is enabled by default because it is inherited by the ba se class.

6.144. vala.bbclassf

The vala class supports recipes that need to build software written using the Vala programming language.

6.145. waf .bbclass]

The wa £ class supports recipes that need to build software that uses the Waf build system. You can use the
EXTRA OECONF or PACKAGECONFTIG CONFARGS variables to specify additional configuration options to be

passed on the Waf command line.

Chapter

7. Tasks]|

Table of Contents

7.1. Normal Recipe Build Tasks

do_build

7.1.1.
1.2,
.1.3.
.1.4.

do _compile
do compile ptest base

.1.5.

do _configure

do _configure ptest base

.1.6.
1.7,
.1.8.
.1.9.

z.16.do_deploy
z1.7.do_fetch
do_image

do_image complete

1.10
11
12

.1.10.do_install
1.11.do _install ptest base
.1.12. do_package
13.

do_package ga

.14.

.15.

do_package write deb
do_package write ipk

.16.

do_package write rpm

17

19
20

1.17. do_package write tar
.1.18. do_packagedata

.1.19. do_patch
.1.20.do_populate lic

21,

.22,

do_populate sdk
do_populate sysroot

.23.

do_prepare recipe sysroot

.24.

do_rm work

1
1
1
1
1
1
1
1.18
1
1
1
1
1
1
1

N

25
7.2. Manual

.1.25. do_unpack

ly_Called Tasks

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

98/235

Yocto Project Reference Manual

7.2.1. do_checkpkg
7.2.2.do_checkuri
7.2.3.do_clean
7.24.do_cleanall
7.2.5.do_cleansstate
7.2.6.do _devpyshell
7.2.7.do_devshell
728.do listtasks
7.2.9.do_package index

7.3. Image-Related Tasks
7.3.1. do_bootimg

7.3.2.do_bundle initramfs
7.3.3.do_rootfs
7.3.4.do_testimage
7.3.5.do_testimage auto

7.4. Kernel-Related Tasks
7.4.1.do_compile kernelmodules

7.4.2.do diffconfig
7.4.3.do_kernel checkout
7.4.4.do_kernel configcheck
7.4.5.do_kernel configme
7.4.6.do_kernel menuconfig
7.4.7.do_kernel metadata
7.4.8.do_menuconfig
7.4.9.do_savedefconfig
7.4.10.do_shared workdir
7.4.11. do _sizecheck
7.4.12.do_strip
7.4.13.do_validate branches

7.5. Miscellaneous Tasks
7.5.1. do_spdx

Tasks are units of execution for BitBake. Recipes (. b files) use tasks to complete configuring, compiling, and packaging
software. This chapter provides a reference of the tasks defined in the OpenEmbedded build system.

7.1. Normal Recipe Build Tasks]

The following sections describe normal tasks associated with building a recipe. For more information on tasks and
dependencies, see the "Tasks" and "Dependencies" sections in the BitBake User Manual.

7.1.1.do_buildf

The default task for all recipes. This task depends on all other normal tasks required to build a recipe.

7.1.2.do_compilef

Compiles the source code. This task runs with the current working directory set to $ {B}.

The default behavior of this task is to run the 0e runmake function if a makefile (Ma kefile, makefile, or
GNUmakefile)is found. If no such file is found, the do_compile task does nothing.

71.3.do_compile ptest basef

Compiles the runtime test suite included in the software being built.

7.1.4. do_configuref

Configures the source by enabling and disabling any build-time and configuration options for the software being built. The
task runs with the current working directory setto S {B}.

The default behavior of this task is to run 0e_runmake clean if a makefile (Makefile, makefile, or
GNUmakefile)is found and CLEANBROKEN is not set to "1". If no such file is found or the CLEANBROKEN
variable is set to "1", the do_configure task does nothing.

7.1.5. do_configure ptest basef

Configures the runtime test suite included in the software being built.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

99/235

http://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html#tasks
http://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html#dependencies

3/4/2020

Yocto Project Reference Manual

7.1.6. do_deployf

Writes output files that are to be deployed to $ { DE PLOY DIR IMAGE}. The task runs with the current working
directory setto S {B}.

Recipes implementing this task should inherit the dep 10V class and should write the output to $ { DEPLOYDIR},
which is not to be confused with $ { DEPLOY DIR}.The deploy class sets up do deploy as a shared state
(sstate) task that can be accelerated through sstate use. The sstate mechanism takes care of copying the output from

S {DEPLOYDIR} to $ {DEPLOY DIR IMAGE}.

Caution
Do not write the output directly to $ { DE PLOY DIR TIMAGE }, as this causes the sstate
mechanism to malfunction.

The do_deploy task is not added as a task by default and consequently needs to be added manually. If you want the
task to run after dO__compi le, you can add it by doing the following:

addtask deploy after do_compile
Adding do__deploy after other tasks works the same way.
Note

You do not need to add before do build tothe addtask command (though it is
harmless), because the pase class contains the following:

do_build[recrdeptask] += "do_deploy"

See the "Dependencies” section in the BitBake User Manual for more information.

Ifthe do_deploy task re-executes, any previous output is removed (i.e. "cleaned").

71.7. do_fetch(

Fetches the source code. This task uses the SRC_URT variable and the argument's prefix to determine the correct fetcher
module.

7.1.8. do_imagef(

Starts the image generation process. The do_image task runs after the OpenEmbedded build system has run the
do_rootfs task during which packages are identified for installation into the image and the root filesystem is created,
complete with post-processing.

The do_image task performs pre-processing on the image through the IMAGE,_PREPROCESS COMMAND and
dynamically generates supporting do_image_* tasks as needed.

For more information on image creation, see the "Image Generation" section in the Yocto Project Overview and Concepts
Manual.

7.1.9.do_image_ complete(

Completes the image generation process. The doiimageicomplete task runs after the OpenEmbedded build
system has run the do_imagg task during which image pre-processing occurs and through dynamically generated
do image * tasks the image is constructed.

The doiimageicomplete task performs post-processing on the image through the
IMAGE_POSTPROCESS_COMMAND.

For more information on image creation, see the "Image Generation" section in the Yocto Project Overview and Concepts
Manual.

7.1.10. do_installf

Copies files that are to be packaged into the holding area S {D}. This task runs with the current working directory set to

S {B}, which is the compilation directory. The do_ins tall task, as well as other tasks that either directly or indirectly
depend on the installed files (e.g. do_package, do_package write * anddo_ rootfs), run under
fakeroot.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

100/235

http://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html#dependencies
http://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html#bb-fetchers
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#image-generation-dev-environment
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#image-generation-dev-environment
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#fakeroot-and-pseudo

3/4/2020 Yocto Project Reference Manual

Caution

When installing files, be careful not to set the owner and group IDs of the installed files to
unintended values. Some methods of copying files, notably when using the recursive CP
command, can preserve the UID and/or GID of the original file, which is usually not what you
want. The host-user—-contaminated QA check checks for files that probably have
the wrong ownership.

Safe methods for installing files include the following:

e The install utility. This utility is the preferred method.
e The CP command with the "--no-preserve=ownership" option.

e The Lar command with the "--no-same-owner" option. See the
bin package.bbclass fileinthemeta/classes directory of the Source
Directory for an example.

71.11.do_install ptest basef

Copies the runtime test suite files from the compilation directory to a holding area.

7.1.12. do_packagef

Analyzes the content of the holding area S {D?} and splits the content into subsets based on available packages and files.
This task makes use of the PACKAGES and FILES variables.

The do_package task, in conjunction with the do_packagedata task, also saves some important package
metadata. For additional information, see the PKGDESTWORK variable and the "Automatically Added Runtime
Dependencies" section in the Yocto Project Overview and Concepts Manual.

7.1.13. do_package_gqgaf

Runs QA checks on packaged files. For more information on these checks, see the insane class.

7.1.14. do_package_write_debf

Creates Debian packages (i.e. * . deb files) and places them in the $ { DEPL.OY DIR DEB} directory in the package
feeds area. For more information, see the "Package Feeds" section in the Yocto Project Overview and Concepts Manual.

7.1.15. do_package write_ ipkf(

Creates IPK packages (i.e. * . 1pk files) and places them in the 3 { DEPLOY DIR TPK} directory in the package
feeds area. For more information, see the "Package Feeds" section in the Yocto Project Overview and Concepts Manual.

7.1.16. do_package _write rpmf

Creates RPM packages (i.e. * . rpm files) and places them in the $ { DEPLOY DIR RPM} directory in the package
feeds area. For more information, see the "Package Feeds" section in the Yocto Project Overview and Concepts Manual.

7.1.17. do_package_write_ tarf

Creates tarballs and places them in the $ { DEPLOY_DIR_TAR} directory in the package feeds area. For more
information, see the "Package Feeds" section in the Yocto Project Overview and Concepts Manual.

7.1.18. do_packagedataf

Saves package metadata generated by the do_packag@ task in PKGDATA DIR to make it available globally.

7.1.19. do_patchf

Locates patch files and applies them to the source code.

After fetching and unpacking source files, the build system uses the recipe's SRC__URT statements to locate and apply
patch files to the source code.

Note

The build system uses the ETLESPATH variable to determine the default set of directories
when searching for patches.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 101/235

http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#automatically-added-runtime-dependencies
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#package-feeds-dev-environment
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#package-feeds-dev-environment
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#package-feeds-dev-environment
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#package-feeds-dev-environment
http://www.yoctoproject.org/docs/3.1/ref-manual/ref-manual.html#var-SRC_URI
http://www.yoctoproject.org/docs/3.1/ref-manual/ref-manual.html#var-FILESPATH

3/4/2020

Yocto Project Reference Manual

Patch files, by default, are * . patch and * . diff files created and kept in a subdirectory of the directory holding the
recipe file. For example, consider the b1uez5 recipe from the OE-Core layer (i.e. poky/meta):

poky/meta/recipes-connectivity/bluez5

This recipe has two patch files located here:

poky/meta/recipes-connectivity/bluez5/bluez5

Inthe bluez5 recipe, the SRC_URT statements point to the source and patch files needed to build the package.

Note
In the case for the bluez5 5.48.DDb recipe, the SRC_URI statements are from an
include file bluez5.inc.

As mentioned earlier, the build system treats files whose file types are . patch and . d1ff as patch files. However, you
can use the "apply=yes" parameter with the SRC_URT statement to indicate any file as a patch file:

SRC_URT = " \

git://path_to_repo/some_package \
file://file;apply=yes \

Conversely, if you have a directory full of patch files and you want to exclude some so that the do_patch task does not
apply them during the patch phase, you can use the "apply=no" parameter with the SRC_URT statement:
SRC_URI = " \
git://path_to_repo/some_package \

file://path_to_Llots_of patch_files \
file://path_to_Llots_of patch_files/patch_file5;apply=no \

In the previous example, assuming all the files in the directory holding the patch files end with either . patch or
.diff, every file would be applied as a patch by default except for the patch_file5 patch.

You can find out more about the patching process in the "Patching" section in the Yocto Project Overview and Concepts
Manual and the "Patching_Code" section in the Yocto Project Development Tasks Manual.

7.1.20. do_populate licf

Writes license information for the recipe that is collected later when the image is constructed.

7.1.21. do_populate_ sdkf

Creates the file and directory structure for an installable SDK. See the "SDK Generation" section in the Yocto Project
Overview and Concepts Manual for more information.

7.1.22. do_populate_sysrootf

Stages (copies) a subset of the files installed by the do_install task into the appropriate sysroot. For information on
how to access these files from other recipes, see the STAGING_DIR* variables. Directories that would typically not be
needed by other recipes at build time (e.g. /€t C) are not copied by default.

For information on what directories are copied by default, see the SYSROOT DIRS™* variables. You can change these
variables inside your recipe if you need to make additional (or fewer) directories available to other recipes at build time.

The do_populate_sys root task is a shared state (sstate) task, which means that the task can be accelerated
through sstate use. Realize also that if the task is re-executed, any previous output is removed (i.e. "cleaned").

7.1.23. do_prepare_recipe_sysrootf

Installs the files into the individual recipe specific sysroots (i.e. recipe-sysroot and recipe-sysroot-
native under $ {WWORKDIR} based upon the dependencies specified by DEPENDS). See the "staging" class
for more information.

7.1.24. do_rm workf

Removes work files after the OpenEmbedded build system has finished with them. You can learn more by looking at the
"rm_work.bbclass" section.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

102/235

http://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/meta/recipes-connectivity/bluez5
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#patching-dev-environment
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#new-recipe-patching-code
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#sdk-generation-dev-environment

3/4/2020

Yocto Project Reference Manual

7.1.25. do_unpack]|

Unpacks the source code into a working directory pointed to by $ { WORKDIR}. The S variable also plays a role in where
unpacked source files ultimately reside. For more information on how source files are unpacked, see the "Source Fetching"
section in the Yocto Project Overview and Concepts Manual and also see the WORKDIR and S variable descriptions.

7.2. Manually Called Tasksf|

These tasks are typically manually triggered (e.g. by using the bitbake -c command-line option):

7.2.1. do_checkpkgf]

Provides information about the recipe including its upstream version and status. The upstream version and status reveals
whether or not a version of the recipe exists upstream and a status of not updated, updated, or unknown.

To check the upstream version and status of a recipe, use the following devtool commands:
$ devtool latest-version
$ devtool check-upgrade-status
See the "devt ool Quick Reference" chapter for more information on devtool. See the "Checking_on the Upgrade
Status of a Recipe" section for information on checking the upgrade status of a recipe.
To build the checkpkq task, use the bitbake command with the "-c" option and task name:

$ bitbake core-image-minimal -c checkpkg
By default, the results are stored in _$LOG7DIR (e.g. SBUI LDiDIR/ tmp/1oq).

7.2.2. do_checkurif
Validates the SRC__URT value.

7.23.do_clean(

Removes all output files for a target from the do__unpack task forward (i.e. do_unpack, do_configure,
do compile,do install,anddo _package).

You can run this task using BitBake as follows:

$ bitbake -c clean recipe

Running this task does not remove the sstate cache files. Consequently, if no changes have been made and the recipe is
rebuilt after cleaning, output files are simply restored from the sstate cache. If you want to remove the sstate cache files for
the recipe, you need to use the do_cleansstate taskinstead (i.e. bitbake -c cleansstate recipe).

7.2.4.do_cleanallf

Removes all output files, shared state (sstate) cache, and downloaded source files for a target (i.e. the contents of
DL_DTIR). Essentially, the docleanall taskis identical to the do_cleansstate task with the added
removal of downloaded source files.

You can run this task using BitBake as follows:

$ bitbake -c cleanall recipe

Typically, you would not normally use the cleanall task. Do so only if you want to start fresh with the do_fetch
task.

7.2.5.do_cleansstatef

Removes all output files and shared state (sstate) cache for a target. Essentially, the doicleansstate task is
identical to the do_clean task with the added removal of shared state (sstate) cache.

You can run this task using BitBake as follows:

$ bitbake -c cleansstate recipe

When you run the do_cleansstate task, the OpenEmbedded build system no longer uses any sstate. Consequently,
building the recipe from scratch is guaranteed.

Note

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

103/235

http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#source-fetching-dev-environment
http://www.yoctoproject.org/docs/3.1/ref-manual/ref-manual.html#devtool-checking-on-the-upgrade-status-of-a-recipe
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#shared-state-cache
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#shared-state-cache
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#shared-state-cache
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#shared-state-cache

3/4/2020 Yocto Project Reference Manual

The do_cleansstate task cannot remove sstate from a remote sstate mirror. If you need
to build a target from scratch using remote mirrors, use the "-f" option as follows:

$ bitbake -f -c do_cleansstate target

7.2.6. do_devpyshell(

Starts a shell in which an interactive Python interpreter allows you to interact with the BitBake build environment. From
within this shell, you can directly examine and set bits from the data store and execute functions as if within the BitBake
environment. See the "Using_a Development Python Shell" section in the Yocto Project Development Tasks Manual for more
information about using devpyshell.

7.2.7.do_devshellf

Starts a shell whose environment is set up for development, debugging, or both. See the "Using_a Development Shell"
section in the Yocto Project Development Tasks Manual for more information about using devshell.

7.2.8.do_listtasks(

Lists all defined tasks for a target.

7.2.9. do_package_index(

Creates or updates the index in the Package Feeds area.

Note

This task is not triggered with the bitbake —c command-line option as are the other tasks in
this section. Because this task is specifically for the package—-index recipe, you run it using
bitbake package-index.

7.3. Image-Related Tasksf|

The following tasks are applicable to image recipes.

7.3.1.do_bootimgf

Creates a bootable live image. See the IMAGE _FSTYPES variable for additional information on live image types.

7.3.2. do_bundle_initramfs

Combines an initial RAM disk (initramfs) image and kernel together to form a single image. The
CONFIG INITRAMES SOURCE variable has some more information about these types of images.

7.3.3.do_rootfs(

Creates the root filesystem (file and directory structure) for an image. See the "Image Generation" section in the Yocto
Project Overview and Concepts Manual for more information on how the root filesystem is created.

7.3.4.do_testimagef

Boots an image and performs runtime tests within the image. For information on automatically testing images, see the
"Performing_Automated Runtime Testing" section in the Yocto Project Development Tasks Manual.

7.3.5.do_testimage_autof

Boots an image and performs runtime tests within the image immediately after it has been built. This task is enabled when
you set TESTTIMAGE AUTO equal to "1".

For information on automatically testing images, see the "Performing_Automated Runtime Testing" section in the Yocto
Project Development Tasks Manual.

7.4. Kernel-Related Tasks{|

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 104/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#platdev-appdev-devpyshell
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#platdev-appdev-devshell
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#package-feeds-dev-environment
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#image-generation-dev-environment
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#performing-automated-runtime-testing

3/4/2020

Yocto Project Reference Manual

The following tasks are applicable to kernel recipes. Some of these tasks (e.g. the doimenuconfig task) are also
applicable to recipes that use Linux kernel style configuration such as the BusyBox recipe.

7.41.do_compile_ kernelmodulesf

Runs the step that builds the kernel modules (if needed). Building a kernel consists of two steps: 1) the kernel
(vmlinux) is built, and 2) the modules are built (i.e. make modules).

7.4.2. do_diffconfigf

When invoked by the user, this task creates a file containing the differences between the original config as produced by

do _kernel configme task and the changes made by the user with other methods (i.e. using

(do_kernel menuconfig). Once the file of differences is created, it can be used to create a config fragment that
only contains the differences. You can invoke this task from the command line as follows:

$ bitbake linux-yocto -c diffconfig

For more information, see the "Creating_Configuration Fragments" section in the Yocto Project Linux Kernel Development
Manual.

7.4.3.do_kernel checkout

Converts the newly unpacked kernel source into a form with which the OpenEmbedded build system can work. Because the
kernel source can be fetched in several different ways, the do_kernel checkout task makes sure that subsequent
tasks are given a clean working tree copy of the kernel with the correct branches checked out.

7.4.4.do_kernel configcheck(

Validates the configuration produced by the do_kernel menuconfig task. The

do kernel configcheck task produces warnings when a requested configuration does not appear in the final
. Canfig file or when you override a policy configuration in a hardware configuration fragment. You can run this task
explicitly and view the output by using the following command:

$ bitbake linux-yocto -c kernel_configcheck -f

For more information, see the "Validating_Configuration" section in the Yocto Project Linux Kernel Development Manual.

7.4.5.do_kernel configmef

After the kernel is patched by the do_patch task, the do_kernel configme task assembles and merges all
the kernel config fragments into a merged configuration that can then be passed to the kernel configuration phase proper.
This is also the time during which user-specified defconfigs are applied if present, and where configuration modes such as —
—allnoconfig are applied.

7.4.6. do_kernel menuconfigf

Invoked by the user to manipulate the . Config file used to build a linux-yocto recipe. This task starts the Linux kernel
configuration tool, which you then use to modify the kernel configuration.

Note

You can also invoke this tool from the command line as follows:

$ bitbake linux-yocto -c menuconfig

See the "Using menuconfig" section in the Yocto Project Linux Kernel Development Manual for more information on
this configuration tool.

7.4.7.do_kernel metadataf

Collects all the features required for a given kernel build, whether the features come from SRC_URT or from Git
repositories. After collection, the do_kernel metadata task processes the features into a series of config
fragments and patches, which can then be applied by subsequent tasks such as do _patch and
do_kernel configme. o

7.4.8. do_menuconfigf

Runs make menuconfig for the kernel. For information on menuconfig, see the "Using_menuconfig"
section in the Yocto Project Linux Kernel Development Manual.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

105/235

http://www.yoctoproject.org/docs/3.1/kernel-dev/kernel-dev.html#creating-config-fragments
http://www.yoctoproject.org/docs/3.1/kernel-dev/kernel-dev.html#validating-configuration
http://www.yoctoproject.org/docs/3.1/kernel-dev/kernel-dev.html#using-menuconfig
http://www.yoctoproject.org/docs/3.1/kernel-dev/kernel-dev.html#using-menuconfig

3/4/2020

Yocto Project Reference Manual

7.4.9. do_savedefconfig|

When invoked by the user, creates a defconfig file that can be used instead of the default defconfig. The saved defconfig
contains the differences between the default defconfig and the changes made by the user using other methods (i.e. the
do_kernel menuconfig task. You can invoke the task using the following command:

$ bitbake linux-yocto -c savedefconfig

7.410. do_shared workdirf

After the kernel has been compiled but before the kernel modules have been compiled, this task copies files required for
module builds and which are generated from the kernel build into the shared work directory. With these copies successfully
copied, the do_compile kernelmodules task can successfully build the kernel modules in the next step of the
build.

7.411. do_sizecheck]

After the kernel has been built, this task checks the size of the stripped kernel image against
KERNEL TMAGE MAXSTZE. If that variable was set and the size of the stripped kernel exceeds that size, the kernel
build produces a warning to that effect.

7.412.do_stripf

If KERNEL TMAGE STRIP EXTRA SECTIONS is defined, this task strips the sections named in that variable
from vl inux. This stripping is typically used to remove nonessential sections such as . comment sections from a
size-sensitive configuration.

7.413. do_validate branches(

After the kernel is unpacked but before it is patched, this task makes sure that the machine and metadata branches as
specified by the SRCREV variables actually exist on the specified branches. If these branches do not exist and
AUTOREV is not being used, the do_validate branches task fails during the build.

7.5. Miscellaneous Tasks|

The following sections describe miscellaneous tasks.

7.5.1. do_spdxf

A build stage that takes the source code and scans it on a remote FOSSOLOGY server in order to produce an SPDX
document. This task applies only to the §pdx class.

Chapter 8. devtool Quick Referencef]

Table of Contents

8.1. Getting_Help

8.2. The Workspace Layer Structure

8.3. Adding_a New Recipe to the Workspace Layer

8.4. Extracting_the Source for an Existing_Recipe

8.5. Synchronizing_a Recipe's Extracted Source Tree
8.6. Modifying_an Existing_Recipe

8.7. Edit an Existing_Recipe

8.8. Updating_a Recipe

8.9. Checking_on the Upgrade Status of a Recipe

8.10. Upgrading_a Recipe

8.11. Resetting_a Recipe

8.12. Building_Your Recipe

8.13. Building_Your Image

8.14. Deploying_Your Software on the Target Machine
8.15. Removing_Your Software from the Target Machine
8.16. Creating_the Workspace Layer in an Alternative Location
8.17. Get the Status of the Recipes in Your Workspace
8.18. Search for Available Target Recipes

The devtool command-line tool provides a number of features that help you build, test, and package software. This
command is available alongside the bitlbake command. Additionally, the devt ool command is a key part of the
extensible SDK.

This chapter provides a Quick Reference for the devt ool command. For more information on how to apply the command
when using the extensible SDK, see the "Using_the Extensible SDK" chapter in the Yocto Project Application Development
and the Extensible Software Development Kit (eSDK) manual.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

106/235

http://www.yoctoproject.org/docs/3.1/sdk-manual/sdk-manual.html#sdk-extensible

3/4/2020 Yocto Project Reference Manual

8.1. Getting Help{

The devtool command line is organized similarly to Git in that it has a number of sub-commands for each function. You
can run devtool -—--help to see all the commands:

$ devtool -h

NOTE: Starting bitbake server...

usage: devtool [--basepath BASEPATH] [--bbpath BBPATH] [-d] [-q]
[--color COLOR] [-h]
<subcommand> ...

OpenEmbedded development tool

options:
--basepath BASEPATH Base directory of SDK / build directory
--bbpath BBPATH Explicitly specify the BBPATH, rather than getting it
from the metadata
-d, --debug Enable debug output
-q, --quiet Print only errors
--color COLOR Colorize output (where COLOR is auto, always, never)
-h, --help show this help message and exit
subcommands:
Beginning work on a recipe:
add Add a new recipe
modify Modify the source for an existing recipe
upgrade Upgrade an existing recipe
Getting information:
status Show workspace status
search Search available recipes
latest-version Report the latest version of an existing recipe

check-upgrade-status Report upgradability for multiple (or all) recipes
Working on a recipe in the workspace:

build Build a recipe

rename Rename a recipe file in the workspace

edit-recipe Edit a recipe file

find-recipe Find a recipe file

configure-help Get help on configure script options

update-recipe Apply changes from external source tree to recipe

reset Remove a recipe from your workspace

finish Finish working on a recipe in your workspace
Testing changes on target:

deploy-target Deploy recipe output files to live target machine

undeploy-target Undeploy recipe output files in live target machine

build-image Build image including workspace recipe packages
Advanced:

create-workspace Set up workspace in an alternative location

export Export workspace into a tar archive

import Import exported tar archive into workspace

extract Extract the source for an existing recipe

sync Synchronize the source tree for an existing recipe

Use devtool <subcommand> --help to get help on a specific command

As directed in the general help output, you can get more syntax on a specific command by providing the command name
and using "--help":

$ devtool add --help
NOTE: Starting bitbake server...

usage: devtool add [-h] [--same-dir | --no-same-dir] [--fetch URI]
[--fetch-dev] [--version VERSION] [--no-git]
[--srcrev SRCREV | --autorev] [--srcbranch SRCBRANCH]

[--binary] [--also-native] [--src-subdir SUBDIR]
[--mirrors] [--provides PROVIDES]
[recipename] [srctree] [fetchuri]

Adds a new recipe to the workspace to build a specified source tree. Can
optionally fetch a remote URI and unpack it to create the source tree.

arguments:

recipename Name for new recipe to add (just name - no version,
path or extension). If not specified, will attempt to
auto-detect it.

srctree Path to external source tree. If not specified, a
subdirectory of
/home/scottrif/poky/build/workspace/sources will be
used.

fetchuri Fetch the specified URI and extract it to create the
source tree

options:
-h, --help show this help message and exit
--same-dir, -s Build in same directory as source
--no-same-dir Force build in a separate build directory

--fetch URI, -f URI Fetch the specified URI and extract it to create the
source tree (deprecated - pass as positional argument
instead)

--fetch-dev For npm, also fetch devDependencies

--version VERSION, -V VERSION
Version to use within recipe (PV)

--no-git, -g If fetching source, do not set up source tree as a git
repository

--srcrev SRCREV, -S SRCREV

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 107/235

3/4/2020 Yocto Project Reference Manual

Source revision to fetch if fetching from an SCM such
as git (default latest)

--autorev, -a When fetching from a git repository, set SRCREV in the
recipe to a floating revision instead of fixed

--srcbranch SRCBRANCH, -B SRCBRANCH
Branch in source repository if fetching from an SCM
such as git (default master)

--binary, -b Treat the source tree as something that should be
installed verbatim (no compilation, same directory
structure). Useful with binary packages e.g. RPMs.

--also-native Also add native variant (i.e. support building recipe
for the build host as well as the target machine)

--src-subdir SUBDIR Specify subdirectory within source tree to use

--mirrors Enable PREMIRRORS and MIRRORS for source tree fetching
(disable by default).

--provides PROVIDES, -p PROVIDES
Specify an alias for the item provided by the recipe.
E.g. virtual/libgl

8.2. The Workspace Layer Structuref|

devtool uses a "Workspace" layer in which to accomplish builds. This layer is not specific to any single devtool
command but is rather a common working area used across the tool.

The following figure shows the workspace structure:

Workspace

Layer
Structure

attic - A directory created if devtool believes it must preserve
anything when you run "devtool reset". For example, if you
run "devtool add", make changes to the recipe, and then
run "devtool reset", devtool takes notice that the file has
been changed and moves it into the attic should you still
want the recipe.

README - Provides information on what is in workspace layer and how to
manage it.

.devtool_md5 - A checksum file used by devtool.

appends - A directory that contains *.bbappend files, which point to
external source.

conf - A configuration directory that contains the layer.conf file.

recipes - A directory containing recipes. This directory contains a
folder for each directory added whose name matches that of the
added recipe. devtool places the recipe.bb file
within that sub-directory.

sources - A directory containing a working copy of the source files used

when building the recipe. This is the default directory used
as the location of the source tree when you do not provide a

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 108/235

3/4/2020

Yocto Project Reference Manual

source tree path. This directory contains a folder for each
set of source files matched to a corresponding recipe.

8.3. Adding a New Recipe to the Workspace Layer]|

Use the devtool add command to add a new recipe to the workspace layer. The recipe you add should not exist -
devtool creates it for you. The source files the recipe uses should exist in an external area.

The following example creates and adds a new recipe named jackson to a workspace layer the tool creates. The source
code built by the recipes resides in /home /user/sources/Jjackson:

$ devtool add jackson /home/user/sources/jackson

If you add a recipe and the workspace layer does not exist, the command creates the layer and populates it as described in
"The Workspace Layer Structure" section.

Running devtool add when the workspace layer exists causes the tool to add the recipe, append files, and source
files into the existing workspace layer. The . bbappend file is created to point to the external source tree.

Note

If your recipe has runtime dependencies defined, you must be sure that these packages exist on
the target hardware before attempting to run your application. If dependent packages (e.g.
libraries) do not exist on the target, your application, when run, will fail to find those functions. For
more information, see the "Deploying_Your Software on the Target Machine" section.

By default, devt ool add uses the latest revision (i.e. master) when unpacking files from a remote URI. In some
cases, you might want to specify a source revision by branch, tag, or commit hash. You can specify these options when using
the devtool add command:

o To specify a source branch, use the ——srcbranch option:

$ devtool add --srcbranch dunfell jackson /home/user/sources/jackson

In the previous example, you are checking out the dunfell branch.

e To specify a specific tag or commit hash, use the ——sSrCcrev option:
$ devtool add --srcrev yocto-3.1 jackson /home/user/sources/jackson

$ devtool add --srcrev some_commit_hash /home/user/sources/jackson

The previous examples check out the yocto-3.1 tag and the commit associated with the some_commit_hash hash.

Note

If you prefer to use the latest revision every time the recipe is built, use the options ——
autorevor —a.

8.4. Extracting the Source for an Existing Recipef|

Use the devtool extract command to extract the source for an existing recipe. When you use this command, you
must supply the root name of the recipe (i.e. no version, paths, or extensions), and you must supply the directory to which
you want the source extracted.

Additional command options let you control the name of a development branch into which you can checkout the source and
whether or not to keep a temporary directory, which is useful for debugging.

8.5. Synchronizing a Recipe's Extracted Source Treef|

Use the devtool sync command to synchronize a previously extracted source tree for an existing recipe. When you
use this command, you must supply the root name of the recipe (i.e. no version, paths, or extensions), and you must supply
the directory to which you want the source extracted.

Additional command options let you control the name of a development branch into which you can checkout the source and
whether or not to keep a temporary directory, which is useful for debugging.

8.6. Modifying an Existing Recipef{

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

109/235

3/4/2020

Yocto Project Reference Manual

Use the devtool modify command to begin modifying the source of an existing recipe. This command is very
similar to the add command except that it does not physically create the recipe in the workspace layer because the recipe
already exists in an another layer.

The devtool modi fy command extracts the source for a recipe, sets it up as a Git repository if the source had not
already been fetched from Git, checks out a branch for development, and applies any patches from the recipe as commits on
top. You can use the following command to checkout the source files:

$ devtool modify recipe

Using the above command form, devt ool uses the existing recipe's SRC_URT statement to locate the upstream
source, extracts the source into the default sources location in the workspace. The default development branch used is
"devtool".

8.7. Edit an Existing Recipef|

Use the devtool edit-recipe command to run the default editor, which is identified using the EDI TOR
variable, on the specified recipe.

When you use the devtool edit-recipe command, you must supply the root name of the recipe (i.e. no
version, paths, or extensions). Also, the recipe file itself must reside in the workspace as a result of the devtool add
ordevtool upgrade commands. However, you can override that requirement by using the "-a" or "--any-recipe"
option. Using either of these options allows you to edit any recipe regardless of its location.

8.8. Updating a Recipef|

Use the devtool update—recipe command to update your recipe with patches that reflect changes you make to
the source files. For example, if you know you are going to work on some code, you could first use the devtool

modi £y command to extract the code and set up the workspace. After which, you could modify, compile, and test the
code.

When you are satisfied with the results and you have committed your changes to the Git repository, you can then run the
devtool update-recipe to create the patches and update the recipe:

$ devtool update-recipe recipe

If you run the devtool update-recipe without committing your changes, the command ignores the changes.

Often, you might want to apply customizations made to your software in your own layer rather than apply them to the
original recipe. If so, you can use the —a or ——append option with the devtool update-recipe command.
These options allow you to specify the layer into which to write an append file:

$ devtool update-recipe recipe -a base-layer-directory

The * . bbappend file is created at the appropriate path within the specified layer directory, which may or may not be in
your bblayers.conf file. If an append file already exists, the command updates it appropriately.

8.9. Checking on the Upgrade Status of a Recipef|

Upstream recipes change over time. Consequently, you might find that you need to determine if you can upgrade a recipe to
a newer version.

To check on the upgrade status of a recipe, use the devtool check-upgrade-status command. The
command displays a table of your current recipe versions, the latest upstream versions, the email address of the recipe's
maintainer, and any additional information such as commit hash strings and reasons you might not be able to upgrade a
particular recipe.

NOTES:

o For the 0e—core layer, recipe maintainers come from the maintainers.inc file.

o If the recipe is using the Git fetcher rather than a tarball, the commit hash points to the
commit that matches the recipe's latest version tag.

As with all devt ool commands, you can get help on the individual command:

$ devtool check-upgrade-status -h
NOTE: Starting bitbake server...
usage: devtool check-upgrade-status [-h] [--all] [recipe [recipe ...]]

Prints a table of recipes together with versions currently provided by
recipes, and latest upstream versions, when there is a later version available

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

110/235

http://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/meta/conf/distro/include/maintainers.inc
http://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html#git-fetcher

3/4/2020 Yocto Project Reference Manual

arguments:
recipe Name of the recipe to report (omit to report upgrade info for
all recipes)
options:

-h, --help show this help message and exit
--all, -a Show all recipes, not just recipes needing upgrade

Unless you provide a specific recipe name on the command line, the command checks all recipes in all configured layers.

Following is a partial example table that reports on all the recipes. Notice the reported reason for not upgrading the base—
ras swd recipe. In this example, while a new version is available upstream, you do not want to use it because the
dependency on cdebconf is not easily satisfied.

Note

When a reason for not upgrading displays, the reason is usually written into the recipe using the
RECIPE NO UPDATE REASON variable. See the base—-passwd.bb recipe for an
example.

$ devtool check-upgrade-status

NOTE: acpid 2.0.30 2.0.31

Ross Burton <ross.burton@intel.com>
NOTE: u-boot-fw-utils 2018.11 2019.01

Marek Vasut <marek.vasut@gmail.com>
d3689267192c5956e09cc7d1baad700141662bff

NOTE: u-boot-tools 2018.11 2019.01
Marek Vasut <marek.vasut@gmail.com>
d3689267192c5956e09cc7d1baad700141662bff

NOTE: base-passwd 3.5.29 3.5.45
Anuj Mittal <anuj.mittal@intel.com> cannot be updated due to: Version
3.5.38 requires cdebconf for update-passwd utility

NOTE: busybox 1.29.2 1.30.0
Andrej Valek <andrej.valek@siemens.com>
NOTE: dbus-test 1.12.10 1.12.12

Chen Qi <Qi.Chen@windriver.com>

8.10. Upgrading a Recipef

As software matures, upstream recipes are upgraded to newer versions. As a developer, you need to keep your local recipes
up-to-date with the upstream version releases. Several methods exist by which you can upgrade recipes. You can read about
them in the "Upgrading_Recipes" section of the Yocto Project Development Tasks Manual. This section overviews the
devtool upgrade command.

Note

Before you upgrade a recipe, you can check on its upgrade status. See the "Checking_on the
Upgrade Status of a Recipe" for more information.

The devtool upgrade command upgrades an existing recipe to a more recent version of the recipe upstream. The
command puts the upgraded recipe file along with any associated files into a "workspace" and, if necessary, extracts the
source tree to a specified location. During the upgrade, patches associated with the recipe are rebased or added as needed.

When you use the devtool upgrade command, you must supply the root name of the recipe (i.e. no version,
paths, or extensions), and you must supply the directory to which you want the source extracted. Additional command
options let you control things such as the version number to which you want to upgrade (i.e. the PV), the source revision to
which you want to upgrade (i.e. the SRCRFEV), whether or not to apply patches, and so forth.

You can read more on the devtool upgrade workflow in the "Use devtool upgrade to Create a Version of
the Recipe that Supports a Newer Version of the Software" section in the Yocto Project Application Development and the
Extensible Software Development Kit (eSDK) manual. You can also see an example of how to use devtool upgrade
in the "Using devtool upgrade" section in the Yocto Project Development Tasks Manual.

8.11. Resetting a Recipef

Use the devtool reset command to remove a recipe and its configuration (e.g. the corresponding . bbappend
file) from the workspace layer. Realize that this command deletes the recipe and the append file. The command does not
physically move them for you. Consequently, you must be sure to physically relocate your updated recipe and the append file
outside of the workspace layer before running the devtool reset command.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 111/235

http://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/meta/recipes-core/base-passwd/base-passwd_3.5.29.bb
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#gs-upgrading-recipes
http://www.yoctoproject.org/docs/3.1/sdk-manual/sdk-manual.html#sdk-devtool-use-devtool-upgrade-to-create-a-version-of-the-recipe-that-supports-a-newer-version-of-the-software
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#gs-using-devtool-upgrade

3/4/2020 Yocto Project Reference Manual

If the devtool reset command detects that the recipe or the append files have been modified, the command
preserves the modified files in a separate "attic" subdirectory under the workspace layer.

Here is an example that resets the workspace directory that contains the mt r recipe:
$ devtool reset mtr
NOTE: Cleaning sysroot for recipe mtr...
NOTE: Leaving source tree /home/scottrif/poky/build/workspace/sources/mtr as-is; if you no
longer need it then please delete it manually

$

8.12. Building Your Recipef

Use the devtool build command to build your recipe. The devtool build command is equivalent to the
bitbake -c populate sysroot command.

When you use the devtool build command, you must supply the root name of the recipe (i.e. do not provide
versions, paths, or extensions). You can use either the "-s" or the "--disable-parallel-make" options to disable parallel makes
during the build. Here is an example:

$ devtool build recipe

8.13. Building Your Imagef

Use the devtool build-image command to build an image, extending it to include packages from recipes in the
workspace. Using this command is useful when you want an image that ready for immediate deployment onto a device for
testing. For proper integration into a final image, you need to edit your custom image recipe appropriately.

When you use the devtool build-image command, you must supply the name of the image. This command has
no command line options:

$ devtool build-image image

8.14. Deploying Your Software on the Target Machinef|

Use the devtool deploy-target command to deploy the recipe's build output to the live target machine:

$ devtool deploy-target recipe target

The target is the address of the target machine, which must be running an SSH server (i.e.
user@hostname[:destdir]).

This command deploys all files installed during the do_ins tall task. Furthermore, you do not need to have package
management enabled within the target machine. If you do, the package manager is bypassed.

Notes

The deploy—target functionality is for development only. You should never use it to
update an image that will be used in production.

Some conditions exist that could prevent a deployed application from behaving as expected. When both of the following
conditions exist, your application has the potential to not behave correctly when run on the target:

e You are deploying a new application to the target and the recipe you used to build the application had correctly defined
runtime dependencies.

e The target does not physically have the packages on which the application depends installed.

If both of these conditions exist, your application will not behave as expected. The reason for this misbehavior is because the
devtool deploy-target command does not deploy the packages (e.g. libraries) on which your new application
depends. The assumption is that the packages are already on the target. Consequently, when a runtime call is made in the
application for a dependent function (e.g. a library call), the function cannot be found.

To be sure you have all the dependencies local to the target, you need to be sure that the packages are pre-deployed
(installed) on the target before attempting to run your application.

8.15. Removing Your Software from the Target Machineq

Use the devtool undeploy-target command to remove deployed build output from the target machine. For
the devtool undeploy-target command to work, you must have previously used the devtool
deploy-target command.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 112/235

3/4/2020

Yocto Project Reference Manual

$ devtool undeploy-target recipe target

The target is the address of the target machine, which must be running an SSH server (i.e. user@hostname).

8.16. Creating the Workspace Layer in an Alternative Location(

Use the devtool create-workspace command to create a new workspace layer in your Build Directory. When

you create a new workspace layer, it is populated with the README file and the con £ directory only.

The following example creates a new workspace layer in your current working and by default names the workspace layer
"workspace":

$ devtool create-workspace

You can create a workspace layer anywhere by supplying a pathname with the command. The following command creates a
new workspace layer named "new-workspace":

$ devtool create-workspace /home/scottrif/new-workspace

8.17. Get the Status of the Recipes in Your Workspacef|

Use the devtool status command to list the recipes currently in your workspace. Information includes the paths to

their respective external source trees.
The devtool status command has no command-line options:
$ devtool status
Following is sample output after using devtool add to create and add themtr 0.86 .Db recipe to the
workspace directory:

$ devtool status

mtr: /home/scottrif/poky/build/workspace/sources/mtr (/home/scottrif/poky/build/workspace/recipes/mtr/mtr_0.86

$

8.18. Search for Available Target Recipes(

Use the devtool search command to search for available target recipes. The command matches the recipe name,
package name, description, and installed files. The command displays the recipe name as a result of a match.

When you use the devtool search command, you must supply a keyword. The command uses the keyword when
searching for a match.

Chapter 9. OpenEmbedded Kickstart (. wks) Referencef

Table of Contents

9.1. Introduction
9.2. Command: part or partition
9.3. Command: bootloader

9.1. Introduction{

The current Wic implementation supports only the basic kickstart partitioning commands: partition (orpart for
short) and bootloader.

Note

Future updates will implement more commands and options. If you use anything that is not
specifically supported, results can be unpredictable.

This chapter provides a reference on the available kickstart commands. The information lists the commands, their syntax,
and meanings. Kickstart commands are based on the Fedora kickstart versions but with modifications to reflect Wic
capabilities. You can see the original documentation for those commands at the following link:

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

113/235

3/4/2020

Yocto Project Reference Manual
http://pykickstart.readthedocs.io/en/latest/kickstart-docs.html

9.2. Command: part or partitionq

Either of these commands creates a partition on the system and uses the following syntax:

part [mntpoint]
partition [mntpoint]

If you do not provide mntpoint, Wic creates a partition but does not mount it.

The mntpoint is where the partition is mounted and must be in one of the following forms:

Specifying a mntpoint causes the partition to automatically be mounted. Wic achieves this by adding entries to the filesystem

/path: For example, "/", "/usr", or "/home"

swap: The created partition is used as swap space

table (fstab) during image generation. In order for Wic to generate a valid fstab, you must also provide one of the ——
ondrive, ——ondisk, or ——use-uuid partition options as part of the command.

Note

The mount program must understand the PARTUUID syntax you use with ——use-uuid and
non-root mountpoint, including swap. The busybox versions of these application are currently
excluded.

Here is an example that uses "/" as the mountpoint. The command uses ——ondi sk to force the partition onto the sdb
disk:

part / --source rootfs --ondisk sdb --fstype=ext3 --label platform --align 1024

Here is a list that describes other supported options you can use with the part and partition commands:

——siZze: The minimum partition size in MBytes. Specify an integer value such as 500. Do not append the number with
"MB". You do not need this option if you use ——source.

—--fixed-size: The exact partition size in MBytes. You cannot specify with ——S 1 ze. An error occurs when
assembling the disk image if the partition data is larger than ——fixed-size.

—=S8ource: This option is a Wic-specific option that names the source of the data that populates the partition. The
most common value for this option is "rootfs", but you can use any value that maps to a valid source plugin. For
information on the source plugins, see the "Using_the Wic Plugins Interface" section in the Yocto Project Development
Tasks Manual.

If you use ——source rootfs, Wiccreates a partition as large as needed and fills it with the contents of the root
filesystem pointed to by the —¥ command-line option or the equivalent rootfs derived from the —€ command-line option.
The filesystem type used to create the partition is driven by the value of the ——f£ st ype option specified for the
partition. See the entry on ——f st ype that follows for more information.

If you use ——source plugin-name, Wic creates a partition as large as needed and fills it with the contents of the
partition that is generated by the specified plugin name using the data pointed to by the —r command-line option or the
equivalent rootfs derived from the —& command-line option. Exactly what those contents are and filesystem type used
are dependent on the given plugin implementation.

If you do not use the ——source option, the wic command creates an empty partition. Consequently, you must use
the ——s 1 ze option to specify the size of the empty partition.

——-ondisk or ——ondrive: Forces the partition to be created on a particular disk.
--fs type: Sets the file system type for the partition. Valid values are:

o extd

o ext3

o ext?2

o btrfs

o squashfs

o swap

——fsoptions: Specifies a free-form string of options to be used when mounting the filesystem. This string is copied
into the /etc/fstab file of the installed system and should be enclosed in quotes. If not specified, the default string
is "defaults".

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

114/235

http://pykickstart.readthedocs.io/en/latest/kickstart-docs.html
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#wic-using-the-wic-plugin-interface

3/4/2020

Yocto Project Reference Manual

« ——label label: Specifies the label to give to the filesystem to be made on the partition. If the given label is
already in use by another filesystem, a new label is created for the partition.

o —-—active: Marks the partition as active.

« ——align (in KBytes): This option is a Wic-specific option that says to start partitions on boundaries given x
KBytes.

« —-no-table: This option is a Wic-specific option. Using the option reserves space for the partition and causes it to

become populated. However, the partition is not added to the partition table.

« ——exclude -pa th: This option is a Wic-specific option that excludes the given relative path from the resulting
image. This option is only effective with the rootfs source plugin.

. ——extra—space: This option is a Wic-specific option that adds extra space after the space filled by the content of

the partition. The final size can exceed the size specified by the ——S 1 z€& option. The default value is 10 Mbytes.

« ——overhead-factor: This option is a Wic-specific option that multiplies the size of the partition by the option's

value. You must supply a value greater than or equal to "1". The default value is "1.3".

o ——part-name: This option is a Wic-specific option that specifies a name for GPT partitions.

« —-part-type: This option is a Wic-specific option that specifies the partition type globally unique identifier (GUID)

for GPT partitions. You can find the list of partition type GUIDs at
http://en.wikipedia.org/wiki/GUID Partition Table#Partition type GUIDs.

o —-use-uuid: This option is a Wic-specific option that causes Wic to generate a random GUID for the partition. The
generated identifier is used in the bootloader configuration to specify the root partition.

« ——uuid: This option is a Wic-specific option that specifies the partition UUID.

« ——fsuuid: This option is a Wic-specific option that specifies the filesystem UUID. You can generate or modify

WKS_FTLE with this option if a preconfigured filesystem UUID is added to the kernel command line in the bootloader

configuration before you run Wic.

. ——system—id: This option is a Wic-specific option that specifies the partition system ID, which is a one byte long,
hexadecimal parameter with or without the 0x prefix.

o ——mkfs-extraopts: This option specifies additional options to pass to the mk £s utility. Some default options
for certain filesystems do not take effect. See Wic's help on kickstart (i.e. wic help kickstart).

9.3. Command: bootloaderq

This command specifies how the bootloader should be configured and supports the following options:

Note

Bootloader functionality and boot partitions are implemented by the various ——source plugins

that implement bootloader functionality. The bootloader command essentially provides a means of
modifying bootloader configuration.

o —-—timeout: Specifies the number of seconds before the bootloader times out and boots the default option.

« —-—append: Specifies kernel parameters. These parameters will be added to the syslinux APPEND or grub kernel

command line.

o —-configfile: Specifies a user-defined configuration file for the bootloader. You can provide a full pathname for
the file or a file that exists in the canned-wks folder. This option overrides all other bootloader options.

Chapter 10. QA Error and Warning Messages|

Table of Contents

10.1. Introduction
10.2. Errors and Warnings

10.1. Introductionq

When building a recipe, the OpenEmbedded build system performs various QA checks on the output to ensure that common

issues are detected and reported. Sometimes when you create a new recipe to build new software, it will build with no

problems. When this is not the case, or when you have QA issues building any software, it could take a little time to resolve

them.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

115/235

http://en.wikipedia.org/wiki/GUID_Partition_Table#Partition_type_GUIDs

3/4/2020

Yocto Project Reference Manual

While it is tempting to ignore a QA message or even to disable QA checks, it is best to try and resolve any reported QA
issues. This chapter provides a list of the QA messages and brief explanations of the issues you could encounter so that you
can properly resolve problems.

The next section provides a list of all QA error and warning messages based on a default configuration. Each entry provides
the message or error form along with an explanation.

Notes
e At the end of each message, the name of the associated QA test (as listed in the
"insane.bbclass" section) appears within square brackets.

e As mentioned, this list of error and warning messages is for QA checks only. The list does not
cover all possible build errors or warnings you could encounter.

e Because some QA checks are disabled by default, this list does not include all possible QA
check errors and warnings.

10.2. Errors and Warningsf

<packagename>: <path> is using libexec please relocate to <libexecdir> [libexec]

The specified package contains files in /usr/libexec when the distro configuration uses a different path for
<libexecdir> By default, <libexecdir>is Sprefix/1ibexec. However, this default can be
changed (e.g. ${1libdir}).

package <packagename> contains bad RPATH <rpath> in file <file> [rpaths]

The specified binary produced by the recipe contains dynamic library load paths (rpaths) that contain build system paths
such as TMPDTR, which are incorrect for the target and could potentially be a security issue. Check for bad —rpath
options being passed to the linker in your do_compile log. Depending on the build system used by the software
being built, there might be a configure option to disable rpath usage completely within the build of the software.

<packagename>: <file> contains probably-redundant RPATH <rpath> [useless-rpaths]

The specified binary produced by the recipe contains dynamic library load paths (rpaths) that on a standard system are
searched by default by the linker (e.g. /11ib and /usr/11iDb). While these paths will not cause any breakage, they
do waste space and are unnecessary. Depending on the build system used by the software being built, there might be a
configure option to disable rpath usage completely within the build of the software.

<packagename> requires <files>, but no providers in its RDEPENDS [file-rdeps]

A file-level dependency has been identified from the specified package on the specified files, but there is no explicit
corresponding entry in RDEPENDS. If particular files are required at runtime then RDEPENDS should be declared in
the recipe to ensure the packages providing them are built.

<packagenamel> rdepends on <packagename2>, but it isn't a build dependency? [build-deps] 9

A runtime dependency exists between the two specified packages, but there is nothing explicit within the recipe to enable
the OpenEmbedded build system to ensure that dependency is satisfied. This condition is usually triggered by an
RDEPENDS value being added at the packaging stage rather than up front, which is usually automatic based on the
contents of the package. In most cases, you should change the recipe to add an explicit RDEPENDS for the
dependency.

non -dev/-dbg/nativesdk- package contains symlink .so: <packagename> path '<path>' [dev-so]

Symlink . SO files are for development only, and should therefore go into the —deV package. This situation might occur
if you add * . SO* rather than * . SO . * to a non-dev package. Change FILES (and possibly PACKAGES) such
that the specified . SO file goes into an appropriate —dewv package.

non -staticdev package contains static .a library: <packagename> path '<path>' [staticdev]

Static . a library files should go into a —staticdev package. Change FILES (and possibly PACKAGES) such
that the specified . a file goes into an appropriate —staticdev package.

<packagename>: found library in wrong location [libdir]

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

116/235

3/4/2020

Yocto Project Reference Manual

The specified file may have been installed into an incorrect (possibly hardcoded) installation path. For example, this test
will catch recipes that install /11ib/bar.so when ${base 1libdir} is"lib32". Another example is when
recipes install /usr/1ib64/fo00.s0 when ${ libdir} is "/usr/lib". False positives occasionally exist. For
these cases add "libdir" to INSANE__SKTP for the package.

non debug package contains .debug directory: <packagename> path <path> [debug-files]

The specified package contains a . debug directory, which should not appear in anything but the —dbg package. This
situation might occur if you add a path which contains a . delbug directory and do not explicitly add the . debug
directory to the —dlbg package. If this is the case, add the . debug directory explicitly to FILES ${PN}-dbg.
See F'TLES for additional information on FTILES. o

Architecture did not match (<machine_arch> to <file_arch>) on <file> [arch]

By default, the OpenEmbedded build system checks the Executable and Linkable Format (ELF) type, bit size, and
endianness of any binaries to ensure they match the target architecture. This test fails if any binaries do not match the
type since there would be an incompatibility. The test could indicate that the wrong compiler or compiler options have
been used. Sometimes software, like bootloaders, might need to bypass this check. If the file you receive the error for is
firmware that is not intended to be executed within the target operating system or is intended to run on a separate
processor within the device, you can add "arch" to INSANE SKTP for the package. Another option is to check the
do_compile log and verify that the compiler options bein_g used are correct.

Bit size did not match (<machine_bits> to <file_bits>) <recipe> on <file> [arch]

By default, the OpenEmbedded build system checks the Executable and Linkable Format (ELF) type, bit size, and
endianness of any binaries to ensure they match the target architecture. This test fails if any binaries do not match the
type since there would be an incompatibility. The test could indicate that the wrong compiler or compiler options have
been used. Sometimes software, like bootloaders, might need to bypass this check. If the file you receive the error for is
firmware that is not intended to be executed within the target operating system or is intended to run on a separate
processor within the device, you can add "arch" to INSANE SKTP for the package. Another option is to check the
doicompile log and verify that the compiler options bein_g used are correct.

Endianness did not match (<machine_endianness> to <file_endianness>) on <file> [arch]

By default, the OpenEmbedded build system checks the Executable and Linkable Format (ELF) type, bit size, and
endianness of any binaries to ensure they match the target architecture. This test fails if any binaries do not match the
type since there would be an incompatibility. The test could indicate that the wrong compiler or compiler options have
been used. Sometimes software, like bootloaders, might need to bypass this check. If the file you receive the error for is
firmware that is not intended to be executed within the target operating system or is intended to run on a separate
processor within the device, you can add "arch" to INSANE SKTP for the package. Another option is to check the
do_compile log and verify that the compiler options bein_g used are correct.

ELF binary '<file>' has relocations in .text [textrel] 9

The specified ELF binary contains relocations in its . texXt sections. This situation can result in a performance impact at
runtime.

Typically, the way to solve this performance issue is to add "-fPIC" or "-fpic" to the compiler command-line options. For
example, given software that reads CE'LLAGS when you build it, you could add the following to your recipe:

CFLAGS_append = " -fPIC "

For more information on text relocations at runtime, see http://www.akkadia.org/drepper/textrelocs.html.

No GNU_HASH in the elf binary: '<file>' [ldflags]

This indicates that binaries produced when building the recipe have not been linked with the LDE'T,AGS options
provided by the build system. Check to be sure that the LDE'LAGS variable is being passed to the linker command. A
common workaround for this situation is to pass in LDELAGS using TARGET CC_ARCH within the recipe as
follows:

TARGET_CC_ARCH += "${LDFLAGS}"

Package <packagename> contains Xorg driver (<driver>) but no xorg-abi- dependencies [xorg-driver-abi]

The specified package contains an Xorg driver, but does not have a corresponding ABI package dependency. The xserver-
xorg recipe provides driver ABI names. All drivers should depend on the ABI versions that they have been built against.
Driver recipes that include xorg—driver-input.incor xorg-driver-video.inc wil

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

117/235

http://www.akkadia.org/drepper/textrelocs.html

3/4/2020

Yocto Project Reference Manual

automatically get these versions. Consequently, you should only need to explicitly add dependencies to binary driver
recipes.

The /usr/share/info/dir file is not meant to be shipped in a particular package. [infodir]

The /usr/share/info/dir should not be packaged. Add the following line to your do_install task or to
your do_install append within the recipe as follows:

rm ${D}${infodir}/dir

Symlink <path> in <packagename> points to TMPDIR [symlink-to-sysroot] 9

The specified symlink points into TMPDTR on the host. Such symlinks will work on the host. However, they are clearly
invalid when running on the target. You should either correct the symlink to use a relative path or remove the symlink.

<file> failed sanity test (workdir) in path <path> [la]

The specified . 1 a file contains TMPDIR paths. Any . 1 a file containing these paths is incorrect since 1 ibtool
adds the correct sysroot prefix when using the files automatically itself.

<file> failed sanity test (tmpdir) in path <path> [pkgconfig]

The specified . pcC file contains TMPDIR /WORKDIR paths. Any . pC file containing these paths is incorrect since
pkg-config itself adds the correct sysroot prefix when the files are accessed.

<packagename> rdepends on <debug_packagename> [debug-deps] 9

A dependency exists between the specified non-dbg package (i.e. a package whose name does not end in —dbQg) and a
package that is a dbg package. The dbg packages contain debug symbols and are brought in using several different
methods:

o Using the dbg-pkgs IMAGE FEATURES value.

o Using IMAGE_INSTALL.
o As a dependency of another AbQ package that was brought in using one of the above methods.

The dependency might have been automatically added because the A g package erroneously contains files that it should
not contain (e.g. a non-symlink . SO file) or it might have been added manually (e.g. by adding to RDEPENDS).

<packagename> rdepends on <dev_packagename> [dev-deps] 9

A dependency exists between the specified non-dev package (a package whose name does not end in —dev) and a
package that is a deV package. The deV packages contain development headers and are usually brought in using
several different methods:

o Using the dev—-pkgs IMAGE FEATURES value.
o Using IMAGE_INSTALL.
o As a dependency of another deV package that was brought in using one of the above methods.

The dependency might have been automatically added (because the deV package erroneously contains files that it
should not have (e.g. a non-symlink . SO file) or it might have been added manually (e.g. by adding to RDEPENDS).

<var>_<packagename> is invalid: <comparison> (<value>) only comparisons <, =, >, <=, and >= are allowed [dep-

cmp]]

If you are adding a versioned dependency relationship to one of the dependency variables (RDEPENDS,
RRECOMMENDS, RSUGGESTS, RPROVIDES, RREPLACES, or RCONFLICTS), you must only use the
named comparison operators. Change the versioned dependency values you are adding to match those listed in the
message.

<recipename>: The compile log indicates that host include and/or library paths were used. Please check the log

'<logfile>' for more information. [compile-host-path]

The log for the doicompile task indicates that paths on the host were searched for files, which is not appropriate
when cross-compiling. Look for "is unsafe for cross-compilation” or "CROSS COMPILE Badness" in the specified log file.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

118/235

3/4/2020

Yocto Project Reference Manual

<recipename>: The install log indicates that host include and/or library paths were used. Please check the log

‘<logfile>"' for more information. [install-host-path]

The log for the do_install task indicates that paths on the host were searched for files, which is not appropriate
when cross-compiling. Look for "is unsafe for cross-compilation" or "CROSS COMPILE Badness" in the specified log file.

This autoconf log indicates errors, it looked at host include and/or library paths while determining system

capabilities. Rerun configure task after fixing this. The path was '<path>'

The log for the do_configu re task indicates that paths on the host were searched for files, which is not
appropriate when cross-compiling. Look for "is unsafe for cross-compilation" or "CROSS COMPILE Badness" in the
specified log file.

<packagename> doesn't match the [a-z0-9.+-]+ regex [pkgname] 9

The convention within the OpenEmbedded build system (sometimes enforced by the package manager itself) is to require
that package names are all lower case and to allow a restricted set of characters. If your recipe name does not match
this, or you add packages to PACKAGES that do not conform to the convention, then you will receive this error.
Rename your recipe. Or, if you have added a non-conforming package name to PACKAGES, change the package name
appropriately.

<recipe>: configure was passed unrecognized options: <options> [unknown-configure-option] ¢

The configure script is reporting that the specified options are unrecognized. This situation could be because the options
were previously valid but have been removed from the configure script. Or, there was a mistake when the options were
added and there is another option that should be used instead. If you are unsure, consult the upstream build
documentation, the . /Configure ——help output, and the upstream change log or release notes. Once you
have worked out what the appropriate change is, you can update EXTRA OECONEF,

PACKAGECONETIG CONFARGS, or the individual PACKAGECONFIG option values accordingly.

Recipe <recipefile> has PN of "<recipename>" which is in OVERRIDES, this can result in unexpected behavior. [pn-
overrides] 9

The specified recipe has a name (PN) value that appears in OVERRTIDES. If a recipe is named such that its PN value
matches something already in OVERRIDES (e.g. PN happens to be the same as MACHINE or DT STRO), it can
have unexpected consequences. For example, assignments such as FILES ${PN} = "xyz" effectively turn into
FILES = "xyz".Rename your recipe (or if PN is being set explicitly, ‘change the PN value) so that the conflict
does not occur. See FTLES for additional information.

<recipefile>: Variable <variable> is set as not being package specific, please fix this. [pkgvarcheck] 9

RREPLACES, FILES, pkg preinst, pkg postinst, pkg prerm, pkg postrm, and
ALLOW_EMPTY) should always be set specific to a package (i.e. they should be set with a package name override
such as RDEPENDS S{PN} = "value" ratherthan RDEPENDS = "value").If you receive this error,
correct any assignments to these variables within your recipe.

File '<file>' from <recipename> was already stripped, this will prevent future debugging! [already-stripped] 9

Produced binaries have already been stripped prior to the build system extracting debug symbols. It is common for
upstream software projects to default to stripping debug symbols for output binaries. In order for debugging to work on
the target using —dbg packages, this stripping must be disabled.

Depending on the build system used by the software being built, disabling this stripping could be as easy as specifying an
additional configure option. If not, disabling stripping might involve patching the build scripts. In the latter case, look for
references to "strip" or "STRIP", or the "-s" or "-S" command-line options being specified on the linker command line
(possibly through the compiler command line if preceded with "-WI,").

Note

Disabling stripping here does not mean that the final packaged binaries will be unstripped. Once
the OpenEmbedded build system splits out debug symbols to the —dbg package, it will then
strip the symbols from the binaries.

<packagename> is listed in PACKAGES multiple times, this leads to packaging errors. [packages-list]

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

119/235

3/4/2020

Yocto Project Reference Manual

Package names must appear only once in the PACKAGES variable. You might receive this error if you are attempting
to add a package to PACKAGES that is already in the variable's value.

FILES variable for package <packagename> contains '//' which is invalid. Attempting to fix this but you should
correct the metadata. [files-invalid] ¢

The string "//" is invalid in a Unix path. Correct all occurrences where this string appears in a EILES variable so that
there is only a single "/".

<recipename>: Files/directories were installed but not shipped in any package [installed-vs-shipped] 9

Files have been installed within the do_install task but have not been included in any package by way of the
F'TLES variable. Files that do not appear in any package cannot be present in an image later on in the build process.
You need to do one of the following:

o Add the files to FILES for the package you want them to appear in (e.g. FILESi$ {PN} for the main package).

o Delete the files at the end of the do_install task if the files are not needed in any package.

<oldpackage>-<oldpkgversion> was registered as shlib provider for <library>, changing it to <newpackage>-
<newpkgversion> because it was built later 9

This message means that both <oldpackage> and <newpackage> provide the specified shared library. You
can expect this message when a recipe has been renamed. However, if that is not the case, the message might indicate
that a private version of a library is being erroneously picked up as the provider for a common library. If that is the case,
you should add the library's . SO file name to PRIVATE TLTBS in the recipe that provides the private version of the
library.

10.3. Configuring and Disabling QA Checks{|

You can configure the QA checks globally so that specific check failures either raise a warning or an error message, using the
WARN QA and ERROR QA variables, respectively. You can also disable checks within a particular recipe using

INSANE7SKI P. For information on how to work with the QA checks, see the "insane .bbclass" section.

Tip
Please keep in mind that the QA checks exist in order to detect real or potential problems in the
packaged output. So exercise caution when disabling these checks.

Chapter 11. Images

The OpenEmbedded build system provides several example images to satisfy different needs. When you issue the
bitbake command you provide a “top-level” recipe that essentially begins the build for the type of image you want.

Note

Building an image without GNU General Public License Version 3 (GPLv3), GNU Lesser General
Public License Version 3 (LGPLv3), and the GNU Affero General Public License Version 3 (AGPL-3.0)
components is only supported for minimal and base images. Furthermore, if you are going to build
an image using non-GPLv3 and similarly licensed components, you must make the following
changes in the 1ocal . conf file before using the BitBake command to build the minimal or

base image:

1. Comment out the EXTRA_IMAGE_FEATURES line
2. Set INCOMPATIBLE_LICENSE = "GPL-3.0 LGPL-3.0 AGPL-3.0"

From within the POKY Git repository, you can use the following command to display the list of directories within the Source
Directory that contain image recipe files:

$ 1s meta*/recipes*/images/*.bb

Following is a list of supported recipes:

build-appliance-image: An example virtual machine that contains all the pieces required to run builds
using the build system as well as the build system itself. You can boot and run the image using either the VMware Player
or VMware Workstation. For more information on this image, see the Build Appliance page on the Yocto Project website.

core-image-base: A console-only image that fully supports the target device hardware.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

120/235

http://www.vmware.com/products/player/overview.html
http://www.vmware.com/products/workstation/overview.html
http://www.yoctoproject.org/software-item/build-appliance/

3/4/2020

Yocto Project Reference Manual

¢ core—-image-clutter: Animage with support for the Open GL-based toolkit Clutter, which enables
development of rich and animated graphical user interfaces.

¢ core-image-full-cmdline: A console-only image with more full-featured Linux system functionality
installed.

e core—-image-1sb: Animage that conforms to the Linux Standard Base (LSB) specification. This image requires a

distribution configuration that enables LSB compliance (e.g. pOoky—1sDb). If you build core—-image—1sb without

that configuration, the image will not be LSB-compliant.

¢ core-image-lsb-dev: A core-image-1sb image that is suitable for development work using the host.
The image includes headers and libraries you can use in a host development environment. This image requires a
distribution configuration that enables LSB compliance (e.g. poky—1sD). If you build core-image-1sb-dev
without that configuration, the image will not be LSB-compliant.

¢ core-image-1lsb-sdk: Acore-image-1sb thatincludes everything in the cross-toolchain but also
includes development headers and libraries to form a complete standalone SDK. This image requires a distribution

configuration that enables LSB compliance (e.g. poky—1sDb). If you build core—-image—-1sb-sdk without that

configuration, the image will not be LSB-compliant. This image is suitable for development using the target.
¢ core-image-minimal: A small image just capable of allowing a device to boot.

¢ core-image-minimal-dev: A core-image-minimal image suitable for development work using
the host. The image includes headers and libraries you can use in a host development environment.

e core-image-minimal-initramfs: Acore-image-minimal image that has the Minimal RAM-
based Initial Root Filesystem (initramfs) as part of the kernel, which allows the system to find the first “init” program
more efficiently. See the PACKAGE TNSTALTL variable for additional information helpful when working with
initramfs images. B

¢ core-image-minimal-mtdutils: Acore-image-minimal image that has support for the
Minimal MTD Utilities, which let the user interact with the MTD subsystem in the kernel to perform operations on flash
devices.

¢ core—-image-rt:Acore-image-minimal image plus a real-time test suite and tools appropriate for
real-time use.

e core-image-rt-sdk: Acore-image-rt image that includes everything in the cross-toolchain. The
image also includes development headers and libraries to form a complete stand-alone SDK and is suitable for
development using the target.

. Core—image—sato: An image with Sato support, a mobile environment and visual style that works well with
mobile devices. The image supports X11 with a Sato theme and applications such as a terminal, editor, file manager,
media player, and so forth.

¢ core-image-sato-dev: Acore-image-sato image suitable for development using the host. The
image includes libraries needed to build applications on the device itself, testing and profiling tools, and debug symbols.
This image was formerly core—image-sdk.

e core-image-sato-sdk: Acore-image-sato image that includes everything in the cross-toolchain.
The image also includes development headers and libraries to form a complete standalone SDK and is suitable for
development using the target.

¢ COre-image-testmaster: A "master" image designed to be used for automated runtime testing. Provides a
"known good" image that is deployed to a separate partition so that you can boot into it and use it to deploy a second
image to be tested. You can find more information about runtime testing in the "Performing_Automated Runtime Testing"
section in the Yocto Project Development Tasks Manual.

¢ core-image-testmaster-initramfs: A RAM-based Initial Root Filesystem (initramfs) image tailored
for use with the core-image-testmaster image.

e COre-image-weston: A very basic Wayland image with a terminal. This image provides the Wayland protocol
libraries and the reference Weston compositor. For more information, see the "Using Wayland and Weston" section in the
Yocto Project Development Tasks Manual.

e core—-image-x11: A very basic X11 image with a terminal.

Chapter 12. Features(|

Table of Contents

12.1. Machine Features
12.2. Distro Features
12.3. Image Features
12.4. Feature Backfilling

This chapter provides a reference of shipped machine and distro features you can include as part of your image, a reference
on image features you can select, and a reference on feature backfilling.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

121/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#dev-using-wayland-and-weston

3/4/2020 Yocto Project Reference Manual

Features provide a mechanism for working out which packages should be included in the generated images. Distributions can
select which features they want to support through the DISTRO FEATURES variable, which is set or appended to in a
distribution's configuration file such as poky.conf, poky-tiny.conf, poky-1sb.conf and so forth.
Machine features are set in the MACHINE FEATURES variable, which is set in the machine configuration file and
specifies the hardware features for a given machine.

These two variables combine to work out which kernel modules, utilities, and other packages to include. A given distribution
can support a selected subset of features so some machine features might not be included if the distribution itself does not
support them.

One method you can use to determine which recipes are checking to see if a particular feature is contained or not is to
grep through the Metadata for the feature. Here is an example that discovers the recipes whose build is potentially
changed based on a given feature:

$ cd poky
$ git grep 'contains.*MACHINE_FEATURES.*feature'

12.1. Machine Featuresf|

The items below are features you can use with MACHTINE FEATURES. Features do not have a one-to-one
correspondence to packages, and they can go beyond simpl?controlling the installation of a package or packages.
Sometimes a feature can influence how certain recipes are built. For example, a feature might determine whether a
particular configure option is specified within the doiconfigu_re task for a particular recipe.

This feature list only represents features as shipped with the Yocto Project metadata:
e acpi: Hardware has ACPI (x86/x86_64 only)

e alsa: Hardware has ALSA audio drivers

e apm: Hardware uses APM (or APM emulation)

e bluetooth: Hardware has integrated BT

e efi: Support for booting through EFI

e ext2: Hardware HDD or Microdrive

e keyboard: Hardware has a keyboard

e pcbios: Support for booting through BIOS

e pci: Hardware has a PCI bus

e pcmcia: Hardware has PCMCIA or CompactFlash sockets
e phone: Mobile phone (voice) support

e gvga: Machine has a QVGA (320x240) display

e rtc: Machine has a Real-Time Clock

e screen: Hardware has a screen

e serial: Hardware has serial support (usually RS232)

e touchscreen: Hardware has a touchscreen

e usbgadget: Hardware is USB gadget device capable

e usbhost: Hardware is USB Host capable

e vfat: FAT file system support

e wifi: Hardware has integrated WiFi

12.2. Distro Featuresf|

The items below are features you can use with DTISTRO FEATURES to enable features across your distribution.
Features do not have a one-to-one correspondence to packages, and they can go beyond simply controlling the installation
of a package or packages. In most cases, the presence or absence of a feature translates to the appropriate option supplied
to the configure script during the do_configu_re task for the recipes that optionally support the feature.

Some distro features are also machine features. These select features make sense to be controlled both at the machine and
distribution configuration level. See the COMBINED FEATURES variable for more information.

This list only represents features as shipped with the Yocto Project metadata:
e alsa: Include ALSA support (OSS compatibility kernel modules installed if available).
e api-documentation: Enables generation of API documentation during recipe builds. The resulting documentation is

added to SDK tarballs when the bitbake —-c populate sdk command is used. See the "Adding API

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 122/235

http://www.yoctoproject.org/docs/3.1/sdk-manual/sdk-manual.html#adding-api-documentation-to-the-standard-sdk

3/4/2020

Yocto Project Reference Manual

Documentation to the Standard SDK" section in the Yocto Project Application Development and the Extensible Software
Development Kit (eSDK) manual.

e bluetooth: Include bluetooth support (integrated BT only).
e cramfs: Include CramFS support.
o directfb: Include DirectFB support.

e ext2: Include tools for supporting for devices with internal HDD/Microdrive for storing files (instead of Flash only
devices).

e ipsec: Include IPSec support.

e ipv6: Include IPv6 support.

e keyboard: Include keyboard support (e.g. keymaps will be loaded during boot).
o Idconfig: Include support for Idconfig and 1 d. so.conf on the target.

e nfs: Include NFS client support (for mounting NFS exports on device).

e opengl: Include the Open Graphics Library, which is a cross-language, multi-platform application programming interface
used for rendering two and three-dimensional graphics.

e pci: Include PCI bus support.
e pcmcia: Include PCMCIA/CompactFlash support.
e ppp: Include PPP dialup support.

e ptest: Enables building the package tests where supported by individual recipes. For more information on package tests,
see the "Testing_Packages With ptest" section in the Yocto Project Development Tasks Manual.

e smbfs: Include SMB networks client support (for mounting Samba/Microsoft Windows shares on device).

o systemd: Include support for this 1n1t manager, which is a full replacement of for 1nit with parallel starting of
services, reduced shell overhead, and other features. This init manager is used by many distributions.

e usbgadget: Include USB Gadget Device support (for USB networking/serial/storage).

e usbhost: Include USB Host support (allows to connect external keyboard, mouse, storage, network etc).
e wayland: Include the Wayland display server protocol and the library that supports it.

e wifi: Include WiFi support (integrated only).

e x11: Include the X server and libraries.

12.3. Image Featuresf|

The contents of images generated by the OpenEmbedded build system can be controlled by the IMAGE FEATURES
and EXTRA TMAGE FEATURES variables that you typically configure in your image recipes. Throﬂgh these
variables, you_can add several different predefined packages such as development utilities or packages with debug
information needed to investigate application problems or profile applications.

The following image features are available for all images:

o allow-empty-password: Allows Dropbear and OpenSSH to accept root logins and logins from accounts having an empty
password string.

o dbg-pkgs: Installs debug symbol packages for all packages installed in a given image.

o debug-tweaks: Makes an image suitable for development (e.g. allows root logins without passwords and enables post-

installation logging). See the 'allow-empty-password', 'empty-root-password', and 'post-install-logging' features in this list

for additional information.
e dev-pkgs: Installs development packages (headers and extra library links) for all packages installed in a given image.
e doc-pkgs: Installs documentation packages for all packages installed in a given image.
e empty-root-password: Sets the root password to an empty string, which allows logins with a blank password.
e package-management: Installs package management tools and preserves the package manager database.

o post-install-logging: Enables logging postinstall script runs to the /var/log/postinstall. 1og file on
first boot of the image on the target system.

Note

To make the /var/log directory on the target persistent, use the
VOLATILE TLOG_DIR variable by setting it to "no".

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

123/235

http://www.yoctoproject.org/docs/3.1/sdk-manual/sdk-manual.html#adding-api-documentation-to-the-standard-sdk
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#testing-packages-with-ptest

3/4/2020

Yocto Project Reference Manual

e ptest-pkgs: Installs ptest packages for all ptest-enabled recipes.

e read-only-rootfs: Creates an image whose root filesystem is read-only. See the "Creating_a Read-Only Root Filesystem"
section in the Yocto Project Development Tasks Manual for more information.

e splash: Enables showing a splash screen during boot. By default, this screen is provided by psplash, which does
allow customization. If you prefer to use an alternative splash screen package, you can do so by setting the SPLASH
variable to a different package name (or names) within the image recipe or at the distro configuration level.

o staticdev-pkgs: Installs static development packages, which are static libraries (i.e. * . a files), for all packages
installed in a given image.

Some image features are available only when you inherit the core—imagg class. The current list of these valid features
is as follows:

e hwcodecs: Installs hardware acceleration codecs.
e nfs-server: Installs an NFS server.

o perf: Installs profiling tools such as perf, systemtap, and LTTng. For general information on user-space tools,
see the Yocto Project Application Development and the Extensible Software Development Kit (eSDK) manual.

o ssh-server-dropbear: Installs the Dropbear minimal SSH server.

e ssh-server-openssh: Installs the OpenSSH SSH server, which is more full-featured than Dropbear. Note that if both the
OpenSSH SSH server and the Dropbear minimal SSH server are present in IMAGE FEATURES, then OpenSSH will
take precedence and Dropbear will not be installed.

e tools-debug: Installs debugging tools such as st race and gdb. For information on GDB, see the "Debugging_With

tracing and profiling, see the Yocto Project Profiling_and Tracing_Manual.

e tools-sdk: Installs a full SDK that runs on the device.

e tools-testapps: Installs device testing tools (e.g. touchscreen debugging).
e x11: Installs the X server.

e x11-base: Installs the X server with a minimal environment.

e x11-sato: Installs the OpenedHand Sato environment.

12.4. Feature Backfillingq

Sometimes it is necessary in the OpenEmbedded build system to extend MACHINE FEATURES or

DISTRO FEATURES to control functionality that was previously enabled and not able to be disabled. For these cases,
we need to add an additional feature item to appear in one of these variables, but we do not want to force developers who
have existing values of the variables in their configuration to add the new feature in order to retain the same overall level of
functionality. Thus, the OpenEmbedded build system has a mechanism to automatically "backfill" these added features into
existing distro or machine configurations. You can see the list of features for which this is done by finding the

DISTRO FEATURES BACKFTILL and MACHINE FEATURES BACKETLL variables in the
meta/conf/bitbake.conf file.

Because such features are backfilled by default into all configurations as described in the previous paragraph, developers
who wish to disable the new features need to be able to selectively prevent the backfilling from occurring. They can do this
by adding the undesired feature or features to the DISTRO FEATURES BACKFILIL, CONSTDERED or

MACHINE FEATURES BACKEFILL CONST DERED variables for distro features and machine features
respectively.

Here are two examples to help illustrate feature backfilling:

e The "pulseaudio” distro feature option: Previously, PulseAudio support was enabled within the Qt and GStreamer
frameworks. Because of this, the feature is backfilled and thus enabled for all distros through the
DISTRO FEATURES BACKFILL variableinthemeta/conf/bitbake.conf file. However, your
distro needs to disable the feature. You can disable the feature without affecting other existing distro configurations that
need PulseAudio support by adding "pulseaudio" to DISTRO FEATURES BACKFILL CONSIDERED in your
distro's . conf file. Adding the feature to this variable when it also exists in the o
DISTRO FEATURES BACKEFTILL variable prevents the build system from adding the feature to your
configuratit;l's DI STRO__FEATURES, effectively disabling the feature for that particular distro.

e The "rtc" machine feature option: Previously, real time clock (RTC) support was enabled for all target devices.
Because of this, the feature is backfilled and thus enabled for all machines through the
MACHINE FEATURES BACKFILL variable in the meta/conf/bitbake.conf file. However, your
target device does not have this capability. You can disable RTC support for your device without affecting other machines
that need RTC support by adding the feature to your machine's
MACHINE FEATURES BACKFILL CONSIDERED list in the machine's . conf file. Adding the feature to
this variable when it also exists in the MACHINE FEATURES BACKFILL variable prevents the build system
from adding the feature to your configuration's MACHINE FEATURES, effectively disabling RTC support for that
particular machine. n

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

124/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#creating-a-read-only-root-filesystem
http://www.yoctoproject.org/docs/3.1/sdk-manual/sdk-manual.html
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#platdev-gdb-remotedebug
http://www.yoctoproject.org/docs/3.1/profile-manual/profile-manual.html

3/4/2020 Yocto Project Reference Manual

Chapter 13. Variables Glossaryq

Table of Contents
Glossary

This chapter lists common variables used in the OpenEmbedded build system and gives an overview of their function and
contents.

Glossaryf|

ABCDEFGHIKLMNOPRSTUVWX

ABIEXTENSIONY|
Extension to the Application Binary Interface (ABI) field of the GNU
canonical architecture name (e.g. "eabi").

ABI extensions are set in the machine include files. For example, the
meta/conf/machine/include/arm/arch-
arm. inc file sets the following extension:

ABIEXTENSION = "eabi"

ALLOW_EMPTY
Specifies whether to produce an output package even if it is empty. By

default, BitBake does not produce empty packages. This default behavior
can cause issues when there is an RDEPENDS or some other hard
runtime requirement on the existence of the package.

Like all package-controlling variables, you must always use them in
conjunction with a package name override, as in:

ALLOW_EMPTY_${PN} = "1"
ALLOW_EMPTY_${PN}-dev = "1"
ALLOW_EMPTY_${PN}-staticdev = "1"

ALTERNATIVES|
Lists commands in a package that need an alternative binary naming
scheme. Sometimes the same command is provided in multiple packages.
When this occurs, the OpenEmbedded build system needs to use the
alternatives system to create a different binary naming scheme so the
commands can co-exist.

To use the variable, list out the package's commands that also exist as
part of another package. For example, if the bus ybox package has
four commands that also exist as part of another package, you identify
them as follows:

ALTERNATIVE_busybox = "sh sed test bracket"

For more information on the alternatives system, see the "gpdate—
alternatives.bbclass" section.

ALTERNATIVE_LINK_NAME
Used by the alternatives system to map duplicated commands to actual
locations. For example, if the bracket command provided by the
busybox package is duplicated through another package, you must
use the ALTERNATIVE LINK NAME variable to specify the
actual location:

ALTERNATIVE_LINK_NAME[bracket] = "/usr/bin/["

In this example, the binary for the bracket command (i.e. [) from
the busybox package resides in /usr/bin/.

Note
If ALTERNATIVE LINK NAME is not
defined, it defaults to $ {bindir} /name.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 125/235

3/4/2020

ALTERNATIVE_PRIORITY|

ALTERNATIVE_TARGETY|

APPEND{|

AR

ARCHIVER_MODE(|

Yocto Project Reference Manual

For more information on the alternatives system, see the "l_lpdate—
alternatives.bbclass" section.

Used by the alternatives system to create default priorities for duplicated
commands. You can use the variable to create a single default regardless
of the command name or package, a default for specific duplicated
commands regardless of the package, or a default for specific commands
tied to particular packages. Here are the available syntax forms:

ALTERNATIVE_PRIORITY = "priority"
ALTERNATIVE_PRIORITY[name] = "priority"
ALTERNATIVE_PRIORITY_pkg[name] = "priority"

For more information on the alternatives system, see the "Llpdate—
alternatives.bbclass" section.

Used by the alternatives system to create default link locations for
duplicated commands. You can use the variable to create a single default
location for all duplicated commands regardless of the command name or
package, a default for specific duplicated commands regardless of the
package, or a default for specific commands tied to particular packages.
Here are the available syntax forms:

ALTERNATIVE_TARGET = "target"
ALTERNATIVE_TARGET[name] = "target"
ALTERNATIVE_TARGET_pkg[name] = "target"

Note

If ALTERNATIVE TARGET is not
defined, it inherits the value from the
ALTERNAT IVE_LINK_NAME variable.

If ALTERNATIVE LINK NAME and
ALTERNATIVE TARGET are the same,
the target for ALTERNATIVE TARGET
has ". {BPN}" appended to it.

Finally, if the file referenced has not been
renamed, the alternatives system will rename
it to avoid the need to rename alternative files
inthedo install task while retaining
support for the command if necessary.

For more information on the alternatives system, see the "gpdate—
alternatives.bbclass" section.

An override list of append strings for each target specified with
LABELS.

See the grub—efi class for more information on how this variable is
used.

The minimal command and arguments used to run ar.

When used with the archiver class, determines the type of
information used to create a released archive. You can use this variable to
create archives of patched source, original source, configured source, and
so forth by employing the following variable flags (varflags):

ARCHIVER_MODE[src] = "original" # Uses original
files.
ARCHIVER_MODE[src] = "patched" # Uses patched s

the default.

ARCHIVER_MODE[src] = "configured" # Uses configure

ARCHIVER_MODE[diff] = "1" # Uses patches t
do_patch.

ARCHIVER_MODE[diff-exclude] ?= "file file ..." # Lists files ar

exclude from c

ARCHIVER_MODE[dumpdata] = "1" # Uses environme

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

126/235

3/4/2020

ASq

ASSUME_PROVIDED(|

ASSUME_SHLIBSY|

AUTHORY|

AUTO_LIBNAME_PKGSY|

AUTO_SYSLINUXMENUY|

AUTOREVY|

AVAILTUNES|

Yocto Project Reference Manual

ARCHIVER_MODE[recipe] = "1" # Uses recipe ar
ARCHIVER_MODE[srpm] = "1" # Uses RPM packe
< >

For information on how the variable works, see the
meta/classes/archiver.bbclass file in the Source
Directory.

Minimal command and arguments needed to run the assembler.

Lists recipe names (PN values) BitBake does not attempt to build.
Instead, BitBake assumes these recipes have already been built.

In OpenEmbedded-Core, ASSUME PROVIDED mostly specifies
native tools that should not be built. An example is git-native,
which when specified, allows for the Git binary from the host to be used
rather than building git-native.

Provides additional sh1ibs provider mapping information, which adds
to or overwrites the information provided automatically by the system.
Separate multiple entries using spaces.

As an example, use the following form to add an sh1ib provider of
shlibname in packagename with the optional version:

shlibname:packagename[_version]

Here is an example that adds a shared library named 1 1bEGL.so.1
as being provided by the 1ibegl-implementation package:

ASSUME_SHLIBS = "1libEGL.so.1l:libegl-implementation”

The email address used to contact the original author or authors in order
to send patches and forward bugs.

When the deb i an class is inherited, which is the default behavior,
AUTO_LIBNAME PKGS specifies which packages should be
checked for libraries and renamed according to Debian library package
naming.

The default value is "${PACKAGES}", which causes the debian class to act
on all packages that are explicitly generated by the recipe.

Enables creating an automatic menu for the syslinux bootloader. You must
set this variable in your recipe. The Sy S 1inux class checks this
variable.

When SRCREV is set to the value of this variable, it specifies to use the
latest source revision in the repository. Here is an example:

SRCREV = "${AUTOREV}"

If you use the previous statement to retrieve the latest version of
software, you need to be sure PV contains $ { SRCPV }. For example,
suppose you have a kernel recipe that inherits the kernel class and you
use the previous statement. In this example, $ { SRCPV } does not
automatically get into PV. Consequently, you need to change PV in your
recipe so that it does contain S { SRCPV }.

For more information see the "Automatically Incrementing_a Binary,
Package Revision Number" section in the Yocto Project Development Tasks
Manual.

The list of defined CPU and Application Binary Interface (ABI) tunings (i.e.
"tunes") available for use by the OpenEmbedded build system.

The list simply presents the tunes that are available. Not all tunes may be
compatible with a particular machine configuration, or with each other in a
Multilib configuration.

To add a tune to the list, be sure to append it with spaces using the "+="
BitBake operator. Do not simply replace the list by using the "=" operator.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

127/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#automatically-incrementing-a-binary-package-revision-number
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#combining-multiple-versions-library-files-into-one-image

3/4/2020 Yocto Project Reference Manual

See the "Basic Syntax" section in the BitBake User Manual for more
information.

Bl
The directory within the Build Directory in which the OpenEmbedded build
system places generated objects during a recipe's build process. By
default, this directory is the same as the S directory, which is defined as:

S = "${WORKDIR}/${BP}"

You can separate the (S) directory and the directory pointed to by the B
variable. Most Autotools-based recipes support separating these
directories. The build system defaults to using separate directories for
gcCc and some kernel recipes.

BAD_RECOMMENDATIONSS|
Lists "recommended-only" packages to not install. Recommended-only
packages are packages installed only through the RRECOMMENDS
variable. You can prevent any of these "recommended" packages from
being installed by listing them with the BAD RECOMMENDATTIONS
variable:

BAD_RECOMMENDATIONS = "package_name package_name package_name ..
< 3
You can set this variable globally in your 1ocal .conf file or you can
attach it to a specific image recipe by using the recipe name override:

BAD_RECOMMENDATIONS_pn-target_image = "package_name"

It is important to realize that if you choose to not install packages using
this variable and some other packages are dependent on them (i.e. listed
in a recipe's RDEPENDS variable), the OpenEmbedded build system
ignores your request and will install the packages to avoid dependency
errors.

Support for this variable exists only when using the IPK and RPM
packaging backend. Support does not exist for DEB.

See the NO_RECOMMENDATTIONS and the
PACKAGE FEXCLUDE variables for related information.

BASE_LIB|
The library directory name for the CPU or Application Binary Interface
(ABI) tune. The BASE LIB applies only in the Multilib context. See the
"Combining_Multiple Versions of Library Files into One Image" section in
the Yocto Project Development Tasks Manual for information on Multilib.

The BASE LIB variable is defined in the machine include files in the
Source Directory. If Multilib is not being used, the value defaults to "lib".

BASE_WORKDIRY
Points to the base of the work directory for all recipes. The default value is
"${TMPDIR}/work".

BB_ALLOWED_NETWORKSY|
Specifies a space-delimited list of hosts that the fetcher is allowed to use
to obtain the required source code. Following are considerations
surrounding this variable:

e This host list is only used if BB_ NO NETWORK is either not set or
set to "0".

e Limited support for wildcard matching against the beginning of host
names exists. For example, the following setting matches
git.gnu.org, ftp.gnu.org, and
foo.git.gnu.orgq.

BB_ALLOWED_NETWORKS = "*.gnu.org"

Important

The use of the "*" character only works at
the beginning of a host name and it must
be isolated from the remainder of the host
name. You cannot use the wildcard
character in any other location of the name

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 128/235

http://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html#basic-syntax
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#combining-multiple-versions-library-files-into-one-image

3/4/2020

BB_DANGLINGAPPENDS_WARNONLYY|

BB_DISKMON_DIRSY|

Yocto Project Reference Manual

or combined with the front part of the
name.

For example, * . fo0o .bar is supported,
while *aa . foo.bar is not.

e Mirrors not in the host list are skipped and logged in debug.
e Attempts to access networks not in the host list cause a failure.

Using BB ALLOWED NETWORKS in conjunction with
PREMIRRORS is very_useful. Adding the host you want to use to
PREMIRRORS results in the source code being fetched from an
allowed location and avoids raising an error when a host that is not
allowed is in a SRC__URT statement. This is because the fetcher does
not attempt to use the host listed in SRC URT after a successful fetch
from the PREMIRRORS occurs. o

Defines how BitBake handles situations where an append file
(.bbappend) has no corresponding recipe file (. D). This condition
often occurs when layers get out of sync (e.g. 0Oe—Ccoxre bumps a
recipe version and the old recipe no longer exists and the other layer has
not been updated to the new version of the recipe yet).

The default fatal behavior is safest because it is the sane reaction given
something is out of sync. It is important to realize when your changes are
no longer being applied.

You can change the default behavior by setting this variable to "1", "yes",
or "true" in your 1local . conf file, which is located in the Build
Directory: Here is an example:

BB_DANGLINGAPPENDS_WARNONLY = "1"

Monitors disk space and available inodes during the build and allows you
to control the build based on these parameters.

Disk space monitoring is disabled by default. To enable monitoring, add
the BB. DISKMON DIRS variable to your conf/local.conf
file found in the Build Directory. Use the following form:

BB_DISKMON_DIRS = "action,dir,threshold [...]"
where:

action is:

ABORT: Immediately abort the build when
a threshold is broken.

STOPTASKS: Stop the build after the currently
executing tasks have finished when
a threshold is broken.

WARN : Issue a warning but continue the
build when a threshold is broken.
Subsequent warnings are issued as
defined by the BB_DISKMON_WARNINTERVAL
variable, which must be defined in
the conf/local.conf file.

dir is:
Any directory you choose. You can specify one or
more directories to monitor by separating the
groupings with a space. If two directories are
on the same device, only the first directory
is monitored.

threshold is:
Either the minimum available disk space,
the minimum number of free inodes, or
both. You must specify at least one. To
omit one or the other, simply omit the value.
Specify the threshold using G, M, K for Gbytes,
Mbytes, and Kbytes, respectively. If you do
not specify G, M, or K, Kbytes is assumed by
default. Do not use GB, MB, or KB.

Here are some examples:

BB_DISKMON_DIRS = "ABORT,${TMPDIR},1G,100K WARN,${SSTATE_DIR},1C
BB_DISKMON_DIRS = "STOPTASKS,${TMPDIR},1G"
BB_DISKMON_DIRS = "ABORT,${TMPDIR},,100K"

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

129/235

3/4/2020

BB_DISKMON_WARNINTERVALS|

BB_GENERATE_MIRROR_TARBALLS|

Yocto Project Reference Manual

The first example works only if you also provide the

BB DISKMON WARNINTERVAL variable in the
conf/local. conf. This example causes the build system to
immediately abort when either the disk space in $ { TMPDIR} drops
below 1 Gbyte or the available free inodes drops below 100 Kbytes.
Because two directories are provided with the variable, the build system
also issue a warning when the disk space in the $ { SSTATE DIR}
directory drops below 1 Gbyte or the number of free inodes dro_ps below
100 Kbytes. Subsequent warnings are issued during intervals as defined
by the BB DISKMON WARNINTERVAL variable.

The second example stops the build after all currently executing tasks
complete when the minimum disk space in the $ { TMPDIR} directory
drops below 1 Gbyte. No disk monitoring occurs for the free inodes in this
case.

The final example immediately aborts the build when the number of free
inodes in the $ { TMPDIR} directory drops below 100 Kbytes. No disk
space monitoring for the directory itself occurs in this case.

Defines the disk space and free inode warning intervals. To set these
intervals, define the variable in your conf/local.conf file in the
Build Directory.

If you are going to use the BB DISKMON WARNINTERVAL
variable, you must also use the BB DTSKMON DIRS variable and
define its action as "WARN". During?he build, subs_equent warnings are
issued each time disk space or number of free inodes further reduces by
the respective interval.

If you do not provide a BB DISKMON WARNINTERVAL variable
and you do use BB DTSKMON DTRS with the "WARN" action, the
disk monitoring interval defaults to the following:

BB_DISKMON_WARNINTERVAL = "5@M,5K"

When specifying the variable in your configuration file, use the following
form:

BB_DISKMON_WARNINTERVAL = "disk_space_interval,disk_inode_interv
where:

disk_space_interval is:
An interval of memory expressed in either
G, M, or K for Gbytes, Mbytes, or Kbytes,
respectively. You cannot use GB, MB, or KB.

disk_inode_1interval is:
An interval of free inodes expressed in either
G, M, or K for Gbytes, Mbytes, or Kbytes,
respectively. You cannot use GB, MB, or KB.

< »

Here is an example:

BB_DISKMON_DIRS = "WARN,${SSTATE_DIR},1G,100K"
BB_DISKMON_WARNINTERVAL = "50M,5K"

These variables cause the OpenEmbedded build system to issue
subsequent warnings each time the available disk space further reduces
by 50 Mbytes or the number of free inodes further reduces by 5 Kbytes in
the S{SSTATE DIR} directory. Subsequent warnings based on the
interval occur each time a respective interval is reached beyond the initial
warning (i.e. 1 Gbytes and 100 Kbytes).

Causes tarballs of the source control repositories (e.g. Git repositories),
including metadata, to be placed in the DL,_DIR directory.

For performance reasons, creating and placing tarballs of these
repositories is not the default action by the OpenEmbedded build system.

BB_GENERATE_MIRROR_TARBALLS = "1"

Set this variable in your 1ocal . conf file in the Build Directory.

Once you have the tarballs containing your source files, you can clean up
your DL, DIR directory by deleting any Git or other source control work
directories.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

130/235

3/4/2020 Yocto Project Reference Manual

BB_NUMBER_THREADSY|
The maximum number of tasks BitBake should run in parallel at any one
time. The OpenEmbedded build system automatically configures this
variable to be equal to the number of cores on the build system. For
example, a system with a dual core processor that also uses hyper-
threading causes the BB NUMBER THREADS variable to default to
4",

For single socket systems (i.e. one CPU), you should not have to override
this variable to gain optimal parallelism during builds. However, if you
have very large systems that employ multiple physical CPUs, you might
want to make sure the BB NUMBER THREADS variable is not set
higher than "20". o B

For more information on speeding up builds, see the "Speeding Up a
Build" section in the Yocto Project Development Tasks Manual.

BB_SERVER_TIMEOUTY
Specifies the time (in seconds) after which to unload the BitBake server

due to inactivity. Set BB SERVER TIMEOUT to determine how
long the BitBake server stays resident between invocations.

For example, the following statement in your Llocal .conf file
instructs the server to be unloaded after 20 seconds of inactivity:

BB_SERVER_TIMEOUT = "20"

If you want the server to never be unloaded, set
BB SERVER TIMEOUT to "-1".

BBCLASSEXTENDS
Allows you to extend a recipe so that it builds variants of the software.

Common variants for recipes exist such as "natives" like quilt—
native, which is a copy of Quilt built to run on the build system;
"crosses" such as JCC—CroOss, which is a compiler built to run on the
build machine but produces binaries that run on the target MACHINE;
"nativesdk", which targets the SDK machine instead of MACHINE; and
"mulitlibs" in the form "multi1ib :multilib_name".

To build a different variant of the recipe with a minimal amount of code, it
usually is as simple as adding the following to your recipe:

BBCLASSEXTEND =+ "native nativesdk"
BBCLASSEXTEND =+ "multilib:multilib_name"

Note

Internally, the BBCLASSEXTEND
mechanism generates recipe variants by
rewriting variable values and applying
overrides such as _class-native. For
example, to generate a native version of a
recipe, a DEPENDS on "foo" is rewritten to a
DEPENDS on "foo-native".

Even when using BBCLASSEXTEND, the
recipe is only parsed once. Parsing once adds
some limitations. For example, it is not
possible to include a different file depending
on the variant, since include statements
are processed when the recipe is parsed.

BBFILE_COLLECTIONSY|
Lists the names of configured layers. These names are used to find the
other BBFILE_* variables. Typically, each layer will append its name
to this variable in its conf/layer.conf file.

BBFILE_PATTERNY|
Variable that expands to match files from BBFTTES in a particular

layer. This variable is used in the conf/layer.conf file and must
be suffixed with the name of the specific layer (e.g.
BBFILE PATTERN emenlow).

BBFILE_PRIORITYY
Assigns the priority for recipe files in each layer.

This variable is useful in situations where the same recipe appears in more
than one layer. Setting this variable allows you to prioritize a layer against

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 131/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#speeding-up-a-build

3/4/2020

BBFILES|

BBFILES_DYNAMICY|

BBINCLUDELOGS|

BBINCLUDELOGS_LINESY|

BBLAYERSY|

Yocto Project Reference Manual

other layers that contain the same recipe - effectively letting you control
the precedence for the multiple layers. The precedence established
through this variable stands regardless of a recipe's version (PV
variable). For example, a layer that has a recipe with a higher PV value
but for which the BBEILE PRIORITY is set to have a lower
precedence still has a lower a’ecedence.

A larger value for the BBFTILE PRIORITY variable results in a
higher precedence. For example,_the value 6 has a higher precedence
than the value 5. If not specified, the BBEILE PRIORITY variable
is set based on layer dependencies (see the LAYERDEPENDS variable
for more information. The default priority, if unspecified for a layer with no
dependencies, is the lowest defined priority + 1 (or 1 if no priorities are
defined).

Tip
You can use the command bitbake-

layers show-layers tolistall
configured layers along with their priorities.

A space-separated list of recipe files BitBake uses to build software.

When specifying recipe files, you can pattern match using Python's g1ob
syntax. For details on the syntax, see the documentation by following the
previous link.

Activates content when identified layers are present. You identify the
layers by the collections that the layers define.

Use the BBEFILES DYNAMIC variable to avoid . bbappend files
whose corresponding_. bb file is in a layer that attempts to modify other
layers through . bbappend but does not want to introduce a hard
dependency on those other layers.

Use the following form for BBEILES DYNAMIC:

collection_name:filename_pattern

The following example identifies two collection names and two filename
patterns:

BBFILES_DYNAMIC += " \

clang-layer:${LAYERDIR}/bbappends/meta-clang/*/*/*.bbappend
core:${LAYERDIR}/bbappends/openembedded-core/meta/*/*/*.bbag

| »

This next example shows an error message that occurs because invalid
entries are found, which cause parsing to abort:

ERROR: BBFILES_DYNAMIC entries must be of the form <collection r

/work/my-layer/bbappends/meta-security-isafw/*/*/*.bbappend
/work/my-layer/bbappends/openembedded-core/meta/*/*/*.bbappe

< »
Variable that controls how BitBake displays logs on build failure.

If BBINCLUDELOGS is set, specifies the maximum number of lines
from the task log file to print when reporting a failed task. If you do not
set BBINCLUDELOGS LINES, the entire log is printed.

Lists the layers to enable during the build. This variable is defined in the
bblayers.conf configuration file in the Build Directory. Here is an
example:

BBLAYERS = " \
/home/scottrif/poky/meta \
/home/scottrif/poky/meta-poky \
/home/scottrif/poky/meta-yocto-bsp \
/home/scottrif/poky/meta-mykernel \

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

132/235

https://docs.python.org/3/library/glob.html

3/4/2020

BBMASKY|

BBMULTICONFIGY|

BBPATHY

Yocto Project Reference Manual

This example enables four layers, one of which is a custom, user-defined
layer named meta-mykernel.

Prevents BitBake from processing recipes and recipe append files.

You can use the BBMASK variable to "hide" these . bl and
.bbappend files. BitBake ignores any recipe or recipe append files
that match any of the expressions. It is as if BitBake does not see them at
all. Consequently, matching files are not parsed or otherwise used by
BitBake.

The values you provide are passed to Python's regular expression
compiler. Consequently, the syntax follows Python's Regular Expression
(re) syntax. The expressions are compared against the full paths to the
files. For complete syntax information, see Python's documentation at
http://docs.python.org/3/library/re.html#re.

The following example uses a complete regular expression to tell BitBake
to ignore all recipe and recipe append files in the meta—
ti/recipes-misc/ directory:

BBMASK = "meta-ti/recipes-misc/"

If you want to mask out multiple directories or recipes, you can specify
multiple regular expression fragments. This next example masks out
multiple directories and individual recipes:

BBMASK += "/meta-ti/recipes-misc/ meta-ti/recipes-ti/packagegrot
BBMASK += "/meta-oe/recipes-support/"

BBMASK += "/meta-foo/.*/openldap"

BBMASK += "opencv.*\.bbappend"

BBMASK += "1lzma"

Note

When specifying a directory name, use the
trailing slash character to ensure you match just
that directory name.

Specifies each additional separate configuration when you are building
targets with multiple configurations. Use this variable in your
conf/local.conf configuration file. Specify a multiconfigname
for each configuration file you are using. For example, the following line
specifies three configuration files:

BBMULTICONFIG = "configA configB configC"

Each configuration file you use must reside in the Build Directory
conf/multiconfig directory (e.g.
build_directory/conf/multiconfig/configA.conf).

For information on how to use BBMULTICONEFEIG in an environment
that supports building targets with multiple configurations, see the
"Building_Images for Multiple Targets Using_Multiple Configurations"
section in the Yocto Project Development Tasks Manual.

Used by BitBake to locate . blboclass and configuration files. This
variable is analogous to the PATH variable.

Note

If you run BitBake from a directory outside of
the Build Directory, you must be sure to set

BBPATH to point to the Build Directory. Set

the variable as you would any environment
variable and then run BitBake:

$ BBPATH = "build _directory"
$ export BBPATH
$ bitbake target

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 133/235

http://docs.python.org/3/library/re.html#re
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#dev-building-images-for-multiple-targets-using-multiple-configurations

3/4/2020
BBSERVERY|

BINCONFIGY|

BINCONFIG_GLOB

BPY

BPNS|

BUGTRACKERS]

BUILD_ARCHY|

BUILD_AS_ARCHY

BUILD_CC_ARCHY|

BUILD_CCLDf|

Yocto Project Reference Manual

If defined in the BitBake environment, BBSERVER points to the BitBake
remote server.

Use the following format to export the variable to the BitBake
environment:

export BBSERVER=localhost:$port"

By default, BBSERVER also appears in
BB_HASHBASE WHITELIST. Consequently, BBSERVER is
excluded from checksum and dependency data.

When inheriting the binconfig-disabled class, this variable
specifies binary configuration scripts to disable in favor of using pkg—
config to query the information. The binconfig-disabled
class will modify the specified scripts to return an error so that calls to
them can be easily found and replaced.

To add multiple scripts, separate them by spaces. Here is an example
from the 1 1bpng recipe:

BINCONFIG = "${bindir}/libpng-config ${bindir}/libpngl6-config"

When inheriting the binconfig class, this variable specifies a
wildcard for configuration scripts that need editing. The scripts are edited
to correct any paths that have been set up during compilation so that they
are correct for use when installed into the sysroot and called by the build
processes of other recipes.

Note
The BINCONFIG GLOB variable uses shell

globbing, which is recognition and expansion of
wildcards during pattern matching. Shell

globbing is very similar to fnmatch and
glob.

For more information on how this variable works, see
meta/classes/binconfig.bbclass in the Source
Directory. You can also find general information on the class in the
"binconfig.bbclass" section.

The base recipe name and version but without any special recipe name
suffix (i.e. —native, 1164 -, and so forth). BP is comprised of the
following:

${BPN}-${PV}

This variable is a version of the PN variable with common prefixes and
suffixes removed, such as nativesdk—-, —cross, —native,
and multilib's 111064 — and 111032 —. The exact lists of prefixes and
suffixes removed are specified by the MLPREF TX and

SPECTIAL PKGSUFFTX variables, respectively.

Specifies a URL for an upstream bug tracking website for a recipe. The
OpenEmbedded build system does not use this variable. Rather, the
variable is a useful pointer in case a bug in the software being built needs
to be manually reported.

Specifies the architecture of the build host (e.g. 1 686). The
OpenEmbedded build system sets the value of BUTLD ARCH from the
machine name reported by the uUname command.

Specifies the architecture-specific assembler flags for the build host. By
default, the value of BUTLD AS ARCH is empty.

Specifies the architecture-specific C compiler flags for the build host. By
default, the value of BUTLD CC ARCH is empty.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

134/235

http://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html#var-BB_HASHBASE_WHITELIST
http://tldp.org/LDP/abs/html/globbingref.html
https://docs.python.org/2/library/fnmatch.html#module-fnmatch
https://docs.python.org/2/library/glob.html

3/4/2020

BUILD_CFLAGS

BUILD_CPPFLAGSY|

BUILD_CXXFLAGSS|

BUILD_FC|

BUILD_LDf|

BUILD_LD_ARCH¢|

BUILD_LDFLAGSS

BUILD_OPTIMIZATIONY|

BUILD_OS

BUILD_PREFIX

BUILD_STRIP

BUILD_SYS

BUILD_VENDORY|

BUILDDIRS|

BUILDHISTORY_COMMITY|

Yocto Project Reference Manual

Specifies the linker command to be used for the build host when the C
compiler is being used as the linker. By default, BULILD CCLD points
to GCC and passes as arguments the value of BUTLD CC ARCH,
assuming BUILD CC_ ARCH is set. o

Specifies the flags to pass to the C compiler when building for the build
host. When building in the —native context, CELAGS is set to the
value of this variable by default.

Specifies the flags to pass to the C preprocessor (i.e. to both the C and
the C++ compilers) when building for the build host. When building in the
-native context, CPPFLAGS is set to the value of this variable by
default.

Specifies the flags to pass to the C++ compiler when building for the build
host. When building in the —native context, CXXFLAGS is set to
the value of this variable by default.

Specifies the Fortran compiler command for the build host. By default,
BUILD FC points to Gfortran and passes as arguments the value of
BUILD_CC_ARCH, assuming BUILD CC ARCH is set.

Specifies the linker command for the build host. By default, BUILD LD
points to the GNU linker (Id) and passes as arguments the value of
BUILD_ LD ARCH, assuming BUILD LD ARCH is set.

Specifies architecture-specific linker flags for the build host. By default,
the value of BUTLD LD ARCH is empty.

Specifies the flags to pass to the linker when building for the build host.
When building in the —nat ive context, LDELAGS is set to the value
of this variable by default.

Specifies the optimization flags passed to the C compiler when building for
the build host or the SDK. The flags are passed through the
BUI LD_CFLAGS and BUILDSDK_CFLAGS default values.

The default value of the BUTLD OPTIMIZATION variable is "-02 -
pipe".

Specifies the operating system in use on the build host (e.g. "linux"). The
OpenEmbedded build system sets the value of BUTLD OS from the 0S
reported by the uname command - the first word, converted to lower-
case characters.

The toolchain binary prefix used for native recipes. The OpenEmbedded
build system uses the BUILD PREFTX value to set the
TARGET PREFTX when building for native recipes.

Specifies the command to be used to strip debugging symbols from
binaries produced for the build host. By default, BUTLD STRIP
points to $ {BUILD PREFIX}strip.

Specifies the system, including the architecture and the operating system,
to use when building for the build host (i.e. when building native
recipes).

The OpenEmbedded build system automatically sets this variable based on
BUTI LD_ARCH, BUILD_VENDOR, and BUILD_OS. You do not
need to set the BUTLD_SYS variable yourself.

Specifies the vendor name to use when building for the build host. The
default value is an empty string ("").

Points to the location of the Build Directory. You can define this directory
indirectly through the ce—init-build-env script by passing in a
Build Directory path when you run the script. If you run the script and do
not provide a Build Directory path, the BUTLDDIR defaults to build
in the current directory.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

135/235

3/4/2020

BUILDHISTORY_COMMIT_AUTHORY

BUILDHISTORY_DIRS|

BUILDHISTORY_FEATURESS

BUILDHISTORY_IMAGE_FILES|

BUILDHISTORY_PUSH_REPOf|

Yocto Project Reference Manual

When inheriting the buildhistory class, this variable specifies
whether or not to commit the build history output in a local Git repository.
If set to "1", this local repository will be maintained automatically by the
buildhistory class and a commit will be created on every build
for changes to each top-level subdirectory of the build history output
(images, packages, and sdk). If you want to track changes to build history
over time, you should set this value to "1".

By default, the buildhistory class does not commit the build
history output in a local Git repository:

BUILDHISTORY_COMMIT ?= "@"

When inheriting the bui 1dhistory class, this variable specifies the
author to use for each Git commit. In order for the

BUILDHISTORY COMMIT AUTHOR variable to work, the
BUILDHISTORY COMMIT variable must be set to "1".

Git requires that the value you provide for the

BUILDHISTORY COMMIT AUTHOR variable takes the form of
"name email@host". PE)Viding an email address or host that is not valid
does not produce an error.

By default, the buildhistory class sets the variable as follows:
BUILDHISTORY_COMMIT_AUTHOR ?= "buildhistory <buildhistory@${DIST

| »

When inheriting the bui1dhi story class, this variable specifies the
directory in which build history information is kept. For more information
on how the variable works, see the buildhistory.class.

By default, the buildhistory class sets the directory as follows:

BUILDHISTORY_DIR ?= "${TOPDIR}/buildhistory"

When inheriting the buildhistory class, this variable specifies the
build history features to be enabled. For more information on how build
history works, see the "Maintaining_Build Output Quality" section in the
Yocto Project Development Tasks Manual.

You can specify these features in the form of a space-separated list:

e image: Analysis of the contents of images, which includes the list of
installed packages among other things.

e package: Analysis of the contents of individual packages.
e sdk: Analysis of the contents of the software development kit (SDK).

e task: Save output file signatures for shared state (sstate) tasks. This
saves one file per task and lists the SHA-256 checksums for each file
staged (i.e. the output of the task).

By default, the buildhistory class enables the following features:

BUILDHISTORY_FEATURES ?= "image package sdk"

When inheriting the buildhi story class, this variable specifies a
list of paths to files copied from the image contents into the build history
directory under an "image-files" directory in the directory for the image,
so that you can track the contents of each file. The default is to copy
/etc/passwdand /etc/group, which allows you to monitor
for changes in user and group entries. You can modify the list to include
any file. Specifying an invalid path does not produce an error.
Consequently, you can include files that might not always be present.

By default, the buildhistory class provides paths to the following
files:

BUILDHISTORY_IMAGE_FILES ?= "/etc/passwd /etc/group"

When inheriting the bui 1dhi st ory class, this variable optionally
specifies a remote repository to which build history pushes Git changes. In
order for BUTLDHISTORY PUSH REPO to work,
BUILDHISTORY COMMIT must be set to "1".

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

136/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#maintaining-build-output-quality
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#shared-state-cache

3/4/2020

BUILDSDK_CFLAGSS

BUILDSDK_CPPFLAGSS

BUILDSDK_CXXFLAGSS|

BUILDSDK_LDFLAGSY|

BUILDSTATS_BASES|

BUSYBOX_SPLIT_SUID|

CACHES

CcCq

CFLAGS

CLASSOVERRIDES|

Yocto Project Reference Manual

The repository should correspond to a remote address that specifies a
repository as understood by Git, or alternatively to a remote name that
you have set up manually using git remote within the local
repository.

By default, the buildhistory class sets the variable as follows:

BUILDHISTORY_PUSH_REPO ?= ""

Specifies the flags to pass to the C compiler when building for the SDK.
When building in the nativesdk— context, CELAGS is set to the
value of this variable by default.

Specifies the flags to pass to the C pre-processor (i.e. to both the C and
the C++ compilers) when building for the SDK. When building in the
nativesdk- context, CPPFLAGS is set to the value of this
variable by default.

Specifies the flags to pass to the C++ compiler when building for the SDK.
When building in the nativesdk— context, CXXFLAGS is set to
the value of this variable by default.

Specifies the flags to pass to the linker when building for the SDK. When
building in the nat ivesdk— context, LDE'LAGS is set to the value
of this variable by default.

Points to the location of the directory that holds build statistics when you
use and enable the buildstats class. The

BUILDSTATS BASE directory defaults to
${TMPDIR}/buildstats/.

For the BusyBox recipe, specifies whether to split the output executable
file into two parts: one for features that require setuid root, and
one for the remaining features (i.e. those that do not require setuid
root).

The BUSYBOX SPLIT SUID variable defaults to "1", which results
in splitting the output executable file. Set the variable to "0" to get a
single output executable file.

Specifies the directory BitBake uses to store a cache of the Metadata so it
does not need to be parsed every time BitBake is started.

The minimal command and arguments used to run the C compiler.

Specifies the flags to pass to the C compiler. This variable is exported to
an environment variable and thus made visible to the software being built
during the compilation step.

Default initialization for CELAGS varies depending on what is being
built:

o TARGET CFLAGS when building for the target

e BUILD CFLAGS when building for the build host (i.e. —
native)

o« BUILDSDK CFEFLAGS when building for an SDK (i.e.
nativesdk-)

An internal variable specifying the special class override that should
currently apply (e.g. "class-target", "class-native", and so forth). The
classes that use this variable (e.g. native, nativesdk, and so
forth) set the variable to appropriate values.

Note
CLASSOVERRIDE gets its default "class-
target" value from the bitbake.conf file.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 137/235

3/4/2020 Yocto Project Reference Manual

As an example, the following override allows you to install extra files, but
only when building for the target:

do_install_append_class-target() {
install my-extra-file ${D}${sysconfdir}
}

Here is an example where F'OO is set to "native" when building for the
build host, and to "other" when not building for the build host:

FOO_class-native = "native"
FOO = "other"

The underlying mechanism behind CLASSOVERRIDE is simply that it
is included in the default value of OVERRIDES.

CLEANBROKENY|
If set to "1" within a recipe, CLEANBROKEN specifies that the make
clean command does not work for the software being built.
Consequently, the OpenEmbedded build system will not try to run ma ke
clean during the do_configure task, which is the default
behavior.

COMBINED_FEATURESY
Provides a list of hardware features that are enabled in both
MACHINE FEATURES and DISTRO FEATURES. This select
list of features contains features that make sense to be controlled both at
the machine and distribution configuration level. For example, the
"bluetooth" feature requires hardware support but should also be optional
at the distribution level, in case the hardware supports Bluetooth but you
do not ever intend to use it.

COMMON_LICENSE_DIRSY
Pointstometa/files/common-licenses in the Source

Directory, which is where generic license files reside.

COMPATIBLE_HOSTY|
A regular expression that resolves to one or more hosts (when the recipe
is native) or one or more targets (when the recipe is non-native) with
which a recipe is compatible. The regular expression is matched against
HOST SYS. You can use the variable to stop recipes from being built
for classes of systems with which the recipes are not compatible. Stopping
these builds is particularly useful with kernels. The variable also helps to
increase parsing speed since the build system skips parsing recipes not
compatible with the current system.

COMPATIBLE_MACHINEY|
A regular expression that resolves to one or more target machines with
which a recipe is compatible. The regular expression is matched against
MACHINEOVERRIDES. You can use the variable to stop recipes
from being built for machines with which the recipes are not compatible.
Stopping these builds is particularly useful with kernels. The variable also
helps to increase parsing speed since the build system skips parsing
recipes not compatible with the current machine.

COMPLEMENTARY_GLOBY|
Defines wildcards to match when installing a list of complementary

packages for all the packages explicitly (or implicitly) installed in an
image.

Note

The COMPLEMENTARY GLOB variable
uses Unix filename pattern Eatching
(£nmatch), which is similar to the Unix style
pathname pattern expansion (g10Db).

The resulting list of complementary packages is associated with an item
that can be added to IMAGE FEATURES. An example usage of this
is the "dev-pkgs" item that when added to IMAGE FEATURES will
install -dev packages (containing headers and other development files) for
every package in the image.

To add a new feature item pointing to a wildcard, use a variable flag to
specify the feature item name and use the value to specify the wildcard.
Here is an example:

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 138/235

https://docs.python.org/2/library/fnmatch.html#module-fnmatch
https://docs.python.org/2/library/glob.html

3/4/2020

COMPONENTS_DIRY|

CONF_VERSIONY|

CONFFILESY]|

CONFIG_INITRAMFS_SOURCES

CONFIG_SITES|

CONFIGURE_FLAGSS

Yocto Project Reference Manual
COMPLEMENTARY_GLOB[dev-pkgs] = '*-dev'

Stores sysroot components for each recipe. The OpenEmbedded build
system uses COMPONENTS DTIR when constructing recipe-specific
sysroots for other recipes.

The default is "$ { STAGING DIR}-components." (ie.
"${ITMPDIR}/sysroots—-components").

Tracks the version of the local configuration file (i.e. Llocal .conf).
The value for CONF_VERSTON increments each time
build/conf/ compatibility changes.

Identifies editable or configurable files that are part of a package. If the
Package Management System (PMS) is being used to update packages on
the target system, it is possible that configuration files you have changed
after the original installation and that you now want to remain unchanged
are overwritten. In other words, editable files might exist in the package
that you do not want reset as part of the package update process. You can
use the CONF'FILES variable to list the files in the package that you
wish to prevent the PMS from overwriting during this update process.

To use the CONF'EFILES variable, provide a package name override
that identifies the resulting package. Then, provide a space-separated list
of files. Here is an example:

CONFFILES_${PN} += "${sysconfdir}/filel \
${sysconfdir}/file2 ${sysconfdir}/file3"

A relationship exists between the CONFFILES and EFILES variables.
The files listed within CONFFILES must be a subset of the files listed
within F'TLES. Because the configuration files you provide with
CONFFILES are simply being identified so that the PMS will not
overwrite them, it makes sense that the files must already be included as
part of the package through the FTLES variable.

Note

When specifying paths as part of the
CONFFILES variable, it is good practice to
use appropriate path variables. For example,
S{sysconfdir} ratherthan /etc or
S{bindir} ratherthan /usr/bin. You
can find a list of these variables at the top of the
meta/conf/bitbake.conf fiein
the Source Directory.

Identifies the initial RAM filesystem (initramfs) source files. The
OpenEmbedded build system receives and uses this kernel Kconfig
variable as an environment variable. By default, the variable is set to null

).

The CONFIG INITRAMES SOURCE can be either a single cpio
archive with a ._Cpio suffix orgspace—separated list of directories and
files for building the initramfs image. A cpio archive should contain a
filesystem archive to be used as an initramfs image. Directories should
contain a filesystem layout to be included in the initramfs image. Files
should contain entries according to the format described by the
usr/gen init cpio program in the kernel tree.

If you specify multiple directories and files, the initramfs image will be the
aggregate of all of them.

For information on creating an initramfs, see the "Building_an Initial RAM
Filesystem (initramfs) Image" section in the Yocto Project Development
Tasks Manual.

A list of files that contains autoconf test results relevant to the
current build. This variable is used by the Autotools utilities when running
configure.

The minimal arguments for GNU configure.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

139/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#building-an-initramfs-image

3/4/2020 Yocto Project Reference Manual

CONFLICT_DISTRO_FEATURESY|
When inheriting the distro features check dass, this
variable identifies distribution features that would be in conflict should the
recipe be built. In other words, if the
CONFLICT DISTRO FEATURES variable lists a feature that
also appears in DISTRO FEATURES within the current
configuration, an error occurs and the build stops.

COPYLEFT_LICENSE_EXCLUDEY
A space-separated list of licenses to exclude from the source archived by

the archiver class. In other words, if a license in a recipe's
LICENSE value is in the value of

COPYLEFT LICENSE EXCLUDE, then its source is not archived
by the class. o o

Note

The COPYLEFTiLICENSEiEXCLUDE
variable takes precedence over the
COPYLEFT LICENSE INCLUDE
variable. a o

The default value, which is "CLOSED Proprietary", for

COPYLEFT LICENSE EXCLUDE is set by the
@p_yleft_filter class, which is inherited by the archiver
class.

COPYLEFT_LICENSE_INCLUDEY
A space-separated list of licenses to include in the source archived by the

archiver class. In other words, if a license in a recipe's LICENSE
value is in the value of COPYLEFT LICENSE INCLUDE, then
its source is archived by the class.

The default value is set by the copyleft filter class, whichis
inherited by the archiver class. The default value includes "GPL*",
"LGPL*", and "AGPL*".

COPYLEFT_PN_EXCLUDEY|
A list of recipes to exclude in the source archived by the archiver
class. The COPYLEFT PN EXCLUDE variable overrides the license
inclusion and exclusion caused through the
COPYLEFTiLICENSEilNCLUDE and
COPYLEFT_LICENSE_EXCLUDE variables, respectively.

nn

The default value, which is "" indicating to not explicitly exclude any
recipes by name, for COPYLEFT PN EXCLUDE is set by the
copyleft filter class, which is inherited by the archiver
class.

COPYLEFT_PN_INCLUDEY
A list of recipes to include in the source archived by the archiver
class. The COPYLEFT PN TNCLUDE variable overrides the license
inclusion and exclusion caused through the
COPYLEFT_LICENSE_INCLUDE and
COPYLEFT LICENSE EXCILUDE variables, respectively.

nn

The default value, which is "" indicating to not explicitly include any
recipes by name, for COPYLEFT PN TINCLUDE is set by the
copyleft filter class, which is inherited by the archiver
class.

COPYLEFT_RECIPE_TYPESY|
A space-separated list of recipe types to include in the source archived by
the archiver class. Recipe types are target, native,
nativesdk, cross, crosssdk, and cross—-canadian.

The default value, which is "target*", for

COPYLEFT_RECI PE_TYPES is set by the

copyleft filter class, which is inherited by the archiver
class.

COPY_LIC_DIRSY
If set to "1" along with the COPY TLIC MANIFEST variable, the
OpenEmbedded build system copies into the image the license files, which
are located in /usr/share/common-licenses, for each
package. The license files are placed in directories within the image itself
during build time.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 140/235

3/4/2020

COPY_LIC_MANIFESTY|

CORE_IMAGE_EXTRA_INSTALLY

COREBASE(|

COREBASE_FILESS

PPy

CPPFLAGSS|

Yocto Project Reference Manual

Note
The COPY LIC DIRS does not offer a

path for adding licenses for newly installed
packages to an image, which might be most
suitable for read-only filesystems that cannot be
upgraded. See the

LICENSE CREATE PACKAGE variable

for additional information. You can also
reference the "Providing_License Text" section in
the Yocto Project Development Tasks Manual for
information on providing license text.

If set to "1", the OpenEmbedded build system copies the license manifest
for the image to /usr/share/common-
licenses/license.manifest within the image itself during
build time.

Note
The COPY LIC MANIFEST does not

offer a path for adding licenses for newly
installed packages to an image, which might be
most suitable for read-only filesystems that
cannot be upgraded. See the

LICENSE CREATE PACKAGE variable

for additional information. You can also
reference the "Providing_License Text" section in
the Yocto Project Development Tasks Manual for
information on providing license text.

Specifies the list of packages to be added to the image. You should only
set this variable in the 1ocal .conf configuration file found in the
Build Directory.

This variable replaces POKY EXTRA TINSTALL, which is no longer
supported.

Specifies the parent directory of the OpenEmbedded-Core Metadata layer
(i.e.meta).

It is an important distinction that COREBASE points to the parent of
this layer and not the layer itself. Consider an example where you have
cloned the Poky Git repository and retained the pOky name for your
local copy of the repository. In this case, COREBASE points to the
poky folder because it is the parent directory of the poky/meta
layer.

Lists files from the COREBASE directory that should be copied other
than the layers listed in the bblayers.conft file. The
COREBASE FILES variable exists for the purpose of copying
metadata from the OpenEmbedded build system into the extensible SDK.

Explicitly listing files in COREBASE is needed because it typically
contains build directories and other files that should not normally be
copied into the extensible SDK. Consequently, the value of
COREBASE FILES is used in order to only copy the files that are
actually needed.

The minimal command and arguments used to run the C preprocessor.

Specifies the flags to pass to the C pre-processor (i.e. to both the C and
the C++ compilers). This variable is exported to an environment variable
and thus made visible to the software being built during the compilation
step.

Default initialization for CPPFLAGS varies depending on what is being
built:

o TARGET CPPFEFLAGS when building for the target

e BUILD CPPFTLAGS when building for the build host (i.e. =
native)

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 141/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#providing-license-text
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#providing-license-text

3/4/2020

CROSS_COMPILES|

CVSDIR

CXXY|

CXXFLAGSY|

D

DATE|

DATETIMES|

DEBIAN_NOAUTONAMEYS|

DEBIANNAME(|

Yocto Project Reference Manual

o BUILDSDK CPPFLAGS when building for an SDK (i.e.
nativesdk-)

The toolchain binary prefix for the target tools. The
CROSS COMPILE variable is the same as the TARGET PREFTIX
variable.

Note
The OpenEmbedded build system sets the
CROSS_ COMPILE variable only in certain

contexts (e.g. when building for kernel and
kernel module recipes).

The directory in which files checked out under the CVS system are stored.
The minimal command and arguments used to run the C++ compiler.

Specifies the flags to pass to the C++ compiler. This variable is exported
to an environment variable and thus made visible to the software being
built during the compilation step.

Default initialization for CXXFLAGS varies depending on what is being
built:

o« TARGET CXXFEFTLAGS when building for the target

o BUILD CXXFLAGS when building for the build host (i.e. —
native)

o BUILDSDK CXXFLAGS when building for an SDK (i.e.
nativesdk-)

The destination directory. The location in the Build Directory where
components are installed by the do_install task. This location
defaults to:

${WORKDIR}/image

Caution

Tasks that read from or write to this directory
should run under fakeroot.

The date the build was started. Dates appear using the year, month, and
day (YMD) format (e.g. "20150209" for February 9th, 2015).

The date and time on which the current build started. The format is
suitable for timestamps.

When the debian class is inherited, which is the default behavior,

DEBIAN NOAUTONAME specifies a particular package should not be
renamed according to Debian library package naming. You must use the
package name as an override when you set this variable. Here is an
example from the fontconfig recipe:

DEBIAN_NOAUTONAME_fontconfig-utils = "1"

When the debi an class is inherited, which is the default behavior,
DEBIANNAME allows you to override the library name for an individual
package. Overriding the library name in these cases is rare. You must use
the package name as an override when you set this variable. Here is an
example from the dbus recipe:

DEBIANNAME_${PN} = "dbus-1"

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#fakeroot-and-pseudo

3/4/2020

DEBUG_BUILDS|

DEBUG_OPTIMIZATIONY|

DEFAULT_PREFERENCES|

DEFAULTTUNES]

DEPENDSY|

Yocto Project Reference Manual

Specifies to build packages with debugging information. This influences
the value of the SELECTED OPTTIMIZATTION variable.

The options to pass in TARGET CFLAGS and CEFLAGS when
compiling a system for debugging. This variable defaults to "-O -fno-omit-

frame-pointer ${DEBUG_FLAGS} -pipe".

Specifies a weak bias for recipe selection priority.

The most common usage of this is variable is to set it to "-1" within a
recipe for a development version of a piece of software. Using the variable
in this way causes the stable version of the recipe to build by default in
the absence of PREFERRED VERSTON being used to build the
development version. N

Note

The bias provided by

DEFAULT PREFERENCE is weak and is
overridden by BBFTLE PRTORTITY if that

variable is different between two layers that
contain different versions of the same recipe.

The default CPU and Application Binary Interface (ABI) tunings (i.e. the
"tune") used by the OpenEmbedded build system. The DEFAULTTUNE
helps define TUNE _FEATURES.

The default tune is either implicitly or explicitly set by the machine
(MACHINE). However, you can override the setting using available
tunes as defined with AVATILTUNES.

Lists a recipe's build-time dependencies. These are dependencies on other
recipes whose contents (e.g. headers and shared libraries) are needed by
the recipe at build time.

As an example, consider a recipe £ 0O that contains the following
assignment:

DEPENDS = "bar"

The practical effect of the previous assignment is that all files installed by
bar will be available in the appropriate staging sysroot, given by the
STAGING DIR* variables, by the time the do configure task
for £00 runs. This mechanism is implemented by hgving

do configure dependonthe do populate sysroot
task of each recipe listed in DEPENDS,_through a [E_ptask]
declaration in the base class.

Note
It seldom is necessary to reference, for example,
STAGING DIR HOST explicitly. The

standard classes and build-related variables are
configured to automatically use the appropriate
staging sysroots.

As another example, DEPENDS can also be used to add utilities that
run on the build machine during the build. For example, a recipe that
makes use of a code generator built by the recipe codegen might have
the following:

DEPENDS = "codegen-native"

For more information, see the native class and the
EXTRANATIVEPATH variable.

Notes

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

143/235

http://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html#variable-flags

3/4/2020

DEPLOY_DIRY|

DEPLOY_DIR_DEBY|

DEPLOY_DIR_IMAGE(

Yocto Project Reference Manual

e DEPENDS is a list of recipe names. Or, to
be more precise, it is a list of PROVIDES
names, which usually match recipe names.
Putting a package name such as "foo-dev"
in DEPENDS does not make sense. Use
"foo" instead, as this will put files from all
the packages that make up £00, which
includes those from foo—dewv, into the
sysroot.

e One recipe having another recipe in
DEPENDS does not by itself add any
runtime dependencies between the
packages produced by the two recipes.
However, as explained in the "Automatically
Added Runtime Dependencies" section in
the Yocto Project Overview and Concepts
Manual, runtime dependencies will often be
added automatically, meaning DEPENDS
alone is sufficient for most recipes.

e Counterintuitively, DEPENDS is often
necessary even for recipes that install
precompiled components. For example, if
libfoo is a precompiled library that
links against 1 ibbar, then linking
against 1 ibf oo requires both 1ibfoo
and 1ibbar to be available in the
sysroot. Without a DEPENDS from the
recipe that installs 1 1o f 00 to the recipe
that installs 1 ibbar, other recipes might
fail to link against 1 1bfoo.

For information on runtime dependencies, see the RDEPENDS variable.
You can also see the "Tasks" and "Dependencies" sections in the BitBake
User Manual for additional information on tasks and dependencies.

Points to the general area that the OpenEmbedded build system uses to
place images, packages, SDKs, and other output files that are ready to be
used outside of the build system. By default, this directory resides within
the Build Directory as $ { TMPDIR} /deploy.

For more information on the structure of the Build Directory, see "The
Build Directory - bui 1d/" section. For more detail on the contents of
the deploy directory, see the "Images", "Package Feeds", and
"Application Development SDK" sections all in the Yocto Project Overview
and Concepts Manual.

Points to the area that the OpenEmbedded build system uses to place
Debian packages that are ready to be used outside of the build system.
This variable applies only when PACKAGE CILASSES contains
"package_deb". a

The BitBake configuration file initially defines the DEPLOY DIR DEB
variable as a sub-folder of DEPLOY_DIR:

DEPLOY_DIR_DEB = "${DEPLOY_DIR}/deb"

The package deb class uses the DEPLOY DIR DEB variable
to make sure the do_package write deb task writes Debian
packages into the ap;;opriate folder. For more information on how
packaging works, see the "Package Feeds" section in the Yocto Project
Overview and Concepts Manual.

Points to the area that the OpenEmbedded build system uses to place
images and other associated output files that are ready to be deployed
onto the target machine. The directory is machine-specific as it contains
the $ {MACHINE } name. By default, this directory resides within the
Build Directory as

S{ DEPLOY_DIR} /images/$ {MACHINE}/.

For more information on the structure of the Build Directory, see "The
Build Directory - bui 1d /" section. For more detail on the contents of

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

144/235

http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#automatically-added-runtime-dependencies
http://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html#tasks
http://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html#dependencies
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#images-dev-environment
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#package-feeds-dev-environment
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#sdk-dev-environment
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#package-feeds-dev-environment

3/4/2020 Yocto Project Reference Manual

the deploy directory, see the "Images" and "Application Development
SDK" sections both in the Yocto Project Overview and Concepts Manual.

DEPLOY_DIR_IPKY
Points to the area that the OpenEmbedded build system uses to place IPK
packages that are ready to be used outside of the build system. This
variable applies only when PACKAGE,_CLASSES contains
"package_ipk".

The BitBake configuration file initially defines this variable as a sub-folder
of DEPLOY_DIR:

DEPLOY_DIR_IPK = "${DEPLOY_DIR}/ipk"

The package ipk class uses the DEPLOY DIR IPK variable
to make sure the_d%packageiwriteiiﬁ_k task writes IPK
packages into the appropriate folder. For more information on how
packaging works, see the "Package Feeds" section in the Yocto Project
Overview and Concepts Manual.

DEPLOY_DIR_RPM¢|
Points to the area that the OpenEmbedded build system uses to place RPM

packages that are ready to be used outside of the build system. This
variable applies only when PACKAGE _CLASSES contains
"package_rpm".

The BitBake configuration file initially defines this variable as a sub-folder
of DEPLOY_DIR:

DEPLOY_DIR_RPM = "${DEPLOY_DIR}/rpm"

The package rpm class uses the DEPLOY DIR RPM variable
to make sure the_dlpackage write rﬁﬁ task writes RPM
packages into the apg;opriate folder. For more information on how
packaging works, see the "Package Feeds" section in the Yocto Project
Overview and Concepts Manual.

DEPLOY_DIR_TARY
Points to the area that the OpenEmbedded build system uses to place

tarballs that are ready to be used outside of the build system. This
variable applies only when PACKAGE _CLASSES contains
"package_tar".

The BitBake configuration file initially defines this variable as a sub-folder
of DEPLOY_DIR:

DEPLOY_DIR_TAR = "${DEPLOY_DIR}/tar"

The package tar class usesthe DEPLOY DIR TAR variable
to make sure the do_package write tar task writes TAR
packages into the apg;opriate folder. For more information on how
packaging works, see the "Package Feeds" section in the Yocto Project

Overview and Concepts Manual.

DEPLOYDIRY|
When inheriting the dep 1oy class, the DEPLOYDIR points to a
temporary work area for deployed files that is set in the deploy class
as follows:

DEPLOYDIR = "${WORKDIR}/deploy-${PN}"
Recipes inheriting the deploy class should copy files to be deployed

into DEPLOYDIR, and the class will take care of copying them into
DEPLOY DIR_ TMAGE afterwards.

DESCRIPTIONY|
The package description used by package managers. If not set,
DESCRIPTION takes the value of the SUMMARY variable.

DISTROY|
The short name of the distribution. For information on the long name of
the distribution, see the DTSTRO NAME variable.

The DISTRO variable corresponds to a distribution configuration file
whose root name is the same as the variable's argument and whose
filename extension is . conf. For example, the distribution configuration
file for the Poky distribution is named poky .conf and resides in the
meta-poky/conf/distro directory of the Source Directory.

Within that poky . conf file, the DISTRO variable is set as follows:

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 145/235

http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#images-dev-environment
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#sdk-dev-environment
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#package-feeds-dev-environment
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#package-feeds-dev-environment
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#package-feeds-dev-environment

3/4/2020 Yocto Project Reference Manual
DISTRO = "poky"

Distribution configuration files are located in a conf/distro
directory within the Metadata that contains the distribution configuration.
The value for DI STRO must not contain spaces, and is typically all
lower-case.

Note

If the DISTRO variable is blank, a set of

default configurations are used, which are

specified within
meta/conf/distro/defaultsetup.conf
also in the Source Directory.

DISTRO_CODENAME(|
Specifies a codename for the distribution being built.

DISTRO_EXTRA_RDEPENDS |
Specifies a list of distro-specific packages to add to all images. This

variable takes affect through packagegroup-base so the
variable only really applies to the more full-featured images that include
packagegroup-base. You can use this variable to keep distro
policy out of generic images. As with all other distro variables, you set this
variable in the distro . conf file.

DISTRO_EXTRA_RRECOMMENDSY|
Specifies a list of distro-specific packages to add to all images if the
packages exist. The packages might not exist or be empty (e.g. kernel
modules). The list of packages are automatically installed but you can
remove them.

DISTRO_FEATURESY|
The software support you want in your distribution for various features.

You define your distribution features in the distribution configuration file.

In most cases, the presence or absence of a feature in

DISTRO FEATURES is translated to the appropriate option supplied
to the confEure script during the do_configure task for recipes
that optionally support the feature. For example, specifying "x11" in
DISTRO FEATURES, causes every piece of software built for the
target that can optionally support X11 to have its X11 support enabled.

Two more examples are Bluetooth and NFS support. For a more complete
list of features that ships with the Yocto Project and that you can provide
with this variable, see the "Distro Features" section.

DISTRO_FEATURES_BACKFILL|
Features to be added to DISTRO FEATURES if not also present in

DISTRO FEATURE S_BACKTE'I LL_CONSIDERED.

This variable is set in the meta/conf/bitbake.conf file. Itis
not intended to be user-configurable. It is best to just reference the
variable to see which distro features are being backfilled for all distro
configurations. See the Feature Backfilling section for more information.

DISTRO_FEATURES_BACKFILL_CONSIDERED|
Features from DISTRO FEATURES BACKETLL that should not

be backfilled (i.e. added to DISTRO FEATURES) during the build.
See the "Feature Backfilling" section for more information.

DISTRO_FEATURES_DEFAULT
A convenience variable that gives you the default list of distro features

with the exception of any features specific to the C library (11bc).

When creating a custom distribution, you might find it useful to be able to
reuse the default DISTRO FEATURES options without the need to
write out the full set. Here is an example that uses

DISTRO FEATURES DEFAULT from a custom distro
configuratia] file: o

DISTRO_FEATURES ?= "${DISTRO_FEATURES_DEFAULT} myfeature"

DISTRO_FEATURES_FILTER_NATIVES
Specifies a list of features that if present in the target
DISTRO_FEATURES value should be included in
DISTRO_FEATURES when building native recipes. This variable is
used in addition to the features filtered using the
DISTRO FEATURES NATIVE variable.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 146/235

3/4/2020
DISTRO_FEATURES_FILTER_NATIVESDKY

DISTRO_FEATURES_NATIVE

DISTRO_FEATURES_NATIVESDKY|

DISTRO_NAMES|

DISTRO_VERSION{|

DISTROOVERRIDESS|

DL_DIRY|

Yocto Project Reference Manual

Specifies a list of features that if present in the target

DISTRO FEATURES value should be included in

DISTRO FEATURES when building nativesdk recipes. This variable
is used in addition to the features filtered using the

DISTRO FEATURES NATIVESDK variable.

Specifies a list of features that should be included in

DISTRO FEATURES when building native recipes. This variable is
used in addition to the features filtered using the

DISTRO FEATURES FILTER NATIVE variable.

Specifies a list of features that should be included in

DISTRO FEATURES when building nativesdk recipes. This variable
is used in addition to the features filtered using the
DISTRO_FEATURES FILTER NATIVESDK variable.

The long name of the distribution. For information on the short name of
the distribution, see the DI STRO variable.

The DISTRO NAME variable corresponds to a distribution
configuration file whose root name is the same as the variable's argument
and whose filename extension is . conf. For example, the distribution
configuration file for the Poky distribution is named poky.conf and
resides in the meta—-poky/conf/distro directory of the
Source Directory.

Within that poky . conf file, the DISTRO_NAME variable is set as
follows:

DISTRO_NAME = "Poky (Yocto Project Reference Distro)"

Distribution configuration files are located in a conf/distro
directory within the Metadata that contains the distribution configuration.

Note

If the DISTRO NAME variable is blank, a set

of default configurations are used, which are

specified within
meta/conf/distro/defaultsetup.conft
also in the Source Directory.

The version of the distribution.

A colon-separated list of overrides specific to the current distribution. By
default, this list includes the value of DI STRO.

You can extend DISTROOVERRIDES to add extra overrides that
should apply to the distribution.

The underlying mechanism behind DISTROOVERRIDES is simply
that it is included in the default value of OVERRIDES.

The central download directory used by the build process to store
downloads. By default, DL, DIR gets files suitable for mirroring for
everything except Git repositories. If you want tarballs of Git repositories,
use the BB_GENERATE MIRROR TARBALLS variable.

You can set this directory by defining the DL, DIR variable in the
conf/local.conf file. This directory is self-maintaining and you
should not have to touch it. By default, the directory is downloads in
the Build Directory.

#DL_DIR ?= "${TOPDIR}/downloads"

To specify a different download directory, simply remove the comment
from the line and provide your directory.

During a first build, the system downloads many different source code
tarballs from various upstream projects. Downloading can take a while,
particularly if your network connection is slow. Tarballs are all stored in

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

147/235

3/4/2020

DOC_COMPRESSS

EFI_PROVIDERY]

ENABLE_BINARY_LOCALE_GENERATIONY|

ERR_REPORT_DIRS|

ERROR_QAY|

EXCLUDE_FROM_SHLIBSY|

Yocto Project Reference Manual

the directory defined by DI DIR and the build system looks there first
to find source tarballs.

Note

When wiping and rebuilding, you can preserve
this directory to speed up this part of
subsequent builds.

You can safely share this directory between multiple builds on the same
development machine. For additional information on how the build process
gets source files when working behind a firewall or proxy server, see this
specific question in the "FAQ" chapter. You can also refer to the "Working
Behind a Network Proxy" Wiki page.

When inheriting the compress doc class, this variable sets the
compression policy used when theapenEmbedded build system
compresses man pages and info pages. By default, the compression
method used is gz (gzip). Other policies available are xz and bz2.

For information on policies and on how to use this variable, see the
comments in the
meta/classes/compress _doc.bbclass file.

When building bootable images (i.e. where hddimg, 1is0, or
wic.vmdkisin IMAGE FSTYPES), the EFI PROVIDER
variable specifies the EFI bootloader to use. The default is "grub-efi", but
"systemd-boot" can be used instead.

See the systemd-boot and image—11ive classes for more
information.

Variable that controls which locales for g1 1bC are generated during the
build (useful if the target device has 64Mbytes of RAM or less).

When used with the report—error class, specifies the path used
for storing the debug files created by the error reporting_tool, which allows
you to submit build errors you encounter to a central database. By
default, the value of this variable is $ {LOG_DIR}/error-
report.

You can set ERR_RE PORT_DIR to the path you want the error
reporting tool to store the debug files as follows in your 1ocal .conf
file:

ERR_REPORT_DIR = "path"

Specifies the quality assurance checks whose failures are reported as
errors by the OpenEmbedded build system. You set this variable in your
distribution configuration file. For a list of the checks you can control with
this variable, see the "insane .bbclass" section.

Triggers the OpenEmbedded build system's shared libraries resolver to
exclude an entire package when scanning for shared libraries.

Note

The shared libraries resolver's functionality
results in part from the internal function

package do_shlibs, whichis part of
the do_package task. You should be aware

that the shared libraries resolver might implicitly
define some dependencies between packages.

The EXCLUDE FROM SHLIBS variable is similar to the
PRIVATE LTBS variable, which excludes a package's particular
libraries only and not the whole package.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

148/235

https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#using-the-error-reporting-tool

3/4/2020 Yocto Project Reference Manual

Use the EXCLUDE FROM SHLIBS variable by setting it to "1" for
a particular package:

EXCLUDE_FROM_SHLIBS = "1"

EXCLUDE_FROM_WORLDY
Directs BitBake to exclude a recipe from world builds (i.e. bitbake
woxr 1d). During world builds, BitBake locates, parses and builds all
recipes found in every layer exposed in the bblayers.conf
configuration file.

To exclude a recipe from a world build using this variable, set the variable
to "1" in the recipe.

Note
Recipes added to
EXCLUDE FROM WORLD may still be

built during a world build in order to satisfy
dependencies of other recipes. Adding a recipe

to EXCLUDE FROM_ WORLD only ensures

that the recipe is not explicitly added to the list
of build targets in a world build.

EXTENDPES|
Used with file and pathnames to create a prefix for a recipe's version

based on the recipe's PE value. If PE is set and greater than zero for a
recipe, EXTENDPE becomes that value (e.g if PE is equal to "1" then
EXTENDPE becomes "1_"). If a recipe's PE is not set (the default) or
is equal to zero, EXTENDPE becomes "".

See the STAMP variable for an example.

EXTENDPKGVY
The full package version specification as it appears on the final packages

produced by a recipe. The variable's value is normally used to fix a
runtime dependency to the exact same version of another package in the
same recipe:

RDEPENDS_${PN}-additional-module = "${PN} (= ${EXTENDPKGV})"

The dependency relationships are intended to force the package manager
to upgrade these types of packages in lock-step.

EXTERNAL_KERNEL_TOOLSY|
When set, the EXTERNAL KERNEL TOOLS variable indicates

that these tools are not in the source tree.

When kernel tools are available in the tree, they are preferred over any
externally installed tools. Setting the

EXTERNAL KERNEL TOOLS variable tells the OpenEmbedded
build system to_prefer the installed external tools. See the kernel -
yocto cassinmeta/classes to see how the variable is used.

EXTERNALSRCY
When inheriting the external src class, this variable points to the

source tree, which is outside of the OpenEmbedded build system. When
set, this variable sets the S variable, which is what the OpenEmbedded
build system uses to locate unpacked recipe source code.

For more information on externalsrc.bbclass, see the
"externalsrc.bbclass" section. You can also find information
on how to use this variable in the "Building_Software from an External
Source" section in the Yocto Project Development Tasks Manual.

EXTERNALSRC_BUILDY
When inheriting the external src class, this variable points to the

directory in which the recipe's source code is built, which is outside of the
OpenEmbedded build system. When set, this variable sets the B variable,
which is what the OpenEmbedded build system uses to locate the Build
Directory.

For more information on externalsrc.bbclass, see the
"externalsrc.bbclass" section. You can also find information
on how to use this variable in the "Building_Software from an External
Source" section in the Yocto Project Development Tasks Manual.

EXTRA_AUTORECONFY|

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 149/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#building-software-from-an-external-source
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#building-software-from-an-external-source

3/4/2020

EXTRA_IMAGE_FEATURESY|

EXTRA_IMAGECMDY|

EXTRA_IMAGEDEPENDSY|

Yocto Project Reference Manual

For recipes inheriting the aut ot ool s class, you can use
EXTRA AUTORECONTF to specify extra options to pass to the
autoreconf command that is executed during the
do_configure task.

The default value is "--exclude=autopoint".

A list of additional features to include in an image. When listing more than
one feature, separate them with a space.

Typically, you configure this variable in your 1ocal . conf file, which
is found in the Build Directory. Although you can use this variable from
within a recipe, best practices dictate that you do not.

Note

To enable primary features from within the
image recipe, use the IMAGE _FEATURES
variable.

Here are some examples of features you can add:

"dbg-pkgs" - Adds -dbg packages for all installed packages
including symbol information for debugging and
profiling.

"debug-tweaks" - Makes an image suitable for debugging.
For example, allows root logins without
passwords and enables post-installation
logging. See the 'allow-empty-password'
and 'post-install-logging' features in
the "Image Features" section for
more information.

"dev-pkgs" - Adds -dev packages for all installed packages.
This is useful if you want to develop against
the libraries in the image.

"read-only-rootfs" - Creates an image whose root
filesystem is read-only. See the
"Creating_a Read-Only Root Filesystem"
section in the Yocto Project
Development Tasks Manual for
more information

"tools-debug" - Adds debugging tools such as gdb and
strace.

"tools-sdk" - Adds development tools such as gcc, make,
pkgconfig and so forth.

"tools-testapps" - Adds useful testing tools such as
ts_print, aplay, arecord and so
forth.

For a complete list of image features that ships with the Yocto Project, see
the "Image Features" section.

For an example that shows how to customize your image by using this
variable, see the "Customizing Images Using_Custom

IMAGE FEATURES and EXTRA TMAGE FEATURES" section
in the Yocto Project Development Tasks Manual.

Specifies additional options for the image creation command that has
been specified in IMAGE__CMD. When setting this variable, use an
override for the associated image type. Here is an example:

EXTRA_IMAGECMD_ext3 ?= "-i 4096"

A list of recipes to build that do not provide packages for installing into the
root filesystem.

Sometimes a recipe is required to build the final image but is not needed
in the root filesystem. You can use the EXTRA TMAGEDEPENDS
variable to list these recipes and thus specify the dependencies. A typical
example is a required bootloader in a machine configuration.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

150/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#creating-a-read-only-root-filesystem
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#usingpoky-extend-customimage-imagefeatures

3/4/2020

EXTRANATIVEPATHY|

EXTRA_OECMAKE(|

EXTRA_OECONFY

EXTRA_OEMAKES|

EXTRA_OESCONSY|

EXTRA_USERS_PARAMS(|

FEATURE_PACKAGESS

Yocto Project Reference Manual

Note
To add packages to the root filesystem, see the
various *RDEPENDS and

*RRECOMMENDS variables.

A list of subdirectories of $ { STAGING BINDIR NATIVE}
added to the beginning of the environment variable PATH. As an
example, the following prepends
"${STAGING_BINDIR_NATIVE}/foo:${STAGING_BINDIR_NATIVE}/bar:"
to PATH:

EXTRANATIVEPATH = "foo bar"

Additional CMake options. See the cmake class for additional
information.

Additional configure script options. See
PACKAGECONFTIG CONFARGS for additional information on
passing configure script options.

Additional GNU ma ke options.

Because the EXTRA OEMAKE defaults to ", you need to set the
variable to specify any required GNU options.

PARALLEL MAKE and PARALLETL MAKETINST also make use
of EXTRA OEMAKE to pass the required flags.

When inheriting the SCONS class, this variable specifies additional
configuration options you want to pass to the SCONSs command line.

When inheriting the extrausers class, this variable provides image
level user and group operations. This is @ more global method of providing
user and group configuration as compared to using the useradd class,
which ties user and group configurations to a specific recipe.

The set list of commands you can configure using the
EXTRA USERS PARAMS is shown in the extrausers class.
These commands map to the normal Unix commands of the same names:

EXTRA_USERS_PARAMS = "\
useradd -p '' tester; \
groupadd developers; \
userdel nobody; \

groupdel -g video; \

groupmod -g 1020 developers; \
usermod -s /bin/sh tester; \

HoH H K HH R H

Defines one or more packages to include in an image when a specific item
is included in IMAGE FEATURES. When setting the value,
FEATURE PACKAGES should have the name of the feature item as
an override. Here is an example:

FEATURE_PACKAGES_widget = "packagel package2"

In this example, if "widget" were added to IMAGE FEATURES,
packagel and package2 would be included in the image.

Note

Packages installed by features defined through
FEATURE PACKAGES are often package
groups. While_similarly named, you should not
confuse the FEATURE PACKAGES

variable with package groups, which are
discussed elsewhere in the documentation.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

151/235

https://cmake.org/overview/

3/4/2020

FEED_DEPLOYDIR_BASE_URI|

FILESY

FILES_SOLIBSDEVY|

FILESEXTRAPATHSY|

Yocto Project Reference Manual

Points to the base URL of the server and location within the document-
root that provides the metadata and packages required by OPKG to
support runtime package management of IPK packages. You set this
variable in your Jocal .conf file.

Consider the following example:

FEED_DEPLOYDIR_BASE_URI = "http://192.168.7.1/BOARD-dir"

This example assumes you are serving your packages over HTTP and your
databases are located in a directory named BOARD-d1 r, which is
underneath your HTTP server's document-root. In this case, the
OpenEmbedded build system generates a set of configuration files for you
in your target that work with the feed.

The list of files and directories that are placed in a package. The
PACKAGES variable lists the packages generated by a recipe.

To use the FTILES variable, provide a package name override that
identifies the resulting package. Then, provide a space-separated list of
files or paths that identify the files you want included as part of the
resulting package. Here is an example:

FILES_${PN} += "${bindir}/mydirl ${bindir}/mydir2/myfile"

Notes

e When specifying files or paths, you can
pattern match using Python's glob
syntax. For details on the syntax, see the
documentation by following the previous
link.

e When specifying paths as part of the
FILES variable, it is good practice to use
appropriate path variables. For example,
use S{sysconfdir} ratherthan
/etc,or S{bindir} rather than
/usr/bin. You can find a list of these
variables at the top of the
meta/conf/bitbake.conf file
in the Source Directory. You will also find
the default values of the various
FILES * variables in this file.

If some of the files you provide with the F TLES variable are editable
and you know they should not be overwritten during the package update
process by the Package Management System (PMS), you can identify
these files so that the PMS will not overwrite them. See the
CONFFILES variable for information on how to identify these files to
the PMS.

Defines the file specification to match SOLTBSDEV. In other words,
FILES SOLIBSDEV defines the full path name of the development
symbolic link (symlink) for shared libraries on the target platform.

The following statement from the bitbake.conf shows how it is
set:

FILES_SOLIBSDEV ?= "${base_libdir}/1ib*${SOLIBSDEV} ${libdir}/1i

| >

Extends the search path the OpenEmbedded build system uses when
looking for files and patches as it processes recipes and append files. The
default directories BitBake uses when it processes recipes are initially
defined by the FTLESPATH variable. You can extend FILESPATH
variable by using FILESEXTRAPATHS.

Best practices dictate that you accomplish this by using
FILESEXTRAPATHS from within a . bbappend file and that you
prepend paths as follows:

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

152/235

https://docs.python.org/2/library/glob.html

3/4/2020 Yocto Project Reference Manual
FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"

In the above example, the build system first looks for files in a directory
that has the same name as the corresponding append file.

Note

When extending FILESEXTRAPATHS,
be sure to use the immediate expansion (:=
operator. Immediate expansion makes sure
that BitBake evaluates THISDIR at the
time the directive is encountered rather than
at some later time when expansion might
result in a directory that does not contain the
files you need.

Also, include the trailing separating colon
character if you are prepending. The trailing
colon character is necessary because you are
directing BitBake to extend the path by
prepending directories to the search path.

Here is another common use:

FILESEXTRAPATHS prepend := "${THISDIR}/files:"

In this example, the build system extends the FILESPATH variable to
include a directory named £iles thatis in the same directory as the
corresponding append file.

This next example specifically adds three paths:

FILESEXTRAPATHS_prepend := "path_1:path_2:path_3:"

A final example shows how you can extend the search path and include a
MACHTNE-specific override, which is useful in a BSP layer:

FILESEXTRAPATHS_prepend_intel-x86-common := "${THISDIR}/${PN}:"

The previous statement appears in the 1 inux-yocto-
dev.bbappend file, which is found in the Yocto Project Source
Repositories inmeta-intel/common/recipes-
kernel/linux. Here, the machine override is a special
PACKAGE _ARCH definition for multiple meta-intel machines.

Note

For a layer that supports a single BSP, the
override could just be the value of MACHINE.

By prepending paths in . bbappend files, you allow multiple append
files that reside in different layers but are used for the same recipe to
correctly extend the path.

FILESOVERRIDESY
A subset of OVERRTDES used by the OpenEmbedded build system for
creating FILESPATH. The FILESOVERRIDES variable uses
overrides to automatically extend the FTTLESPATH variable. For an
example of how that works, see the T LESPATH variable description.
Additionally, you find more information on how overrides are handled in
the "Conditional Syntax (Overrides)" section of the BitBake User Manual.

By default, the FILESOVERRIDES variable is defined as:

FILESOVERRIDES = "${TRANSLATED_TARGET_ARCH}:${MACHINEOVERRIDES}:

| »

Note

Do not hand-edit the FILESOVERRIDES
variable. The values match up with expected

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 153/235

http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#source-repositories
http://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html#conditional-syntax-overrides

3/4/2020

FILESPATHY|

FILESYSTEM_PERMS_TABLESY|

Yocto Project Reference Manual

overrides and are used in an expected manner
by the build system.

The default set of directories the OpenEmbedded build system uses when
searching for patches and files.

During the build process, BitBake searches each directory in
FILESPATH in the specified order when looking for files and patches
specified by each £11e:// URIin a recipe's SRC_URT statements.

The default value for the FILESPATH variable is defined in the
base.bbclass cdass found inmeta/classes in the Source
Directory.:

FILESPATH = "${@base_set_filespath(["${FILE_DIRNAME}/${BP}", \
"${FILE_DIRNAME}/${BPN}", "${FILE_DIRNAME}/files"], d)}"

The FILESPATH variable is automatically extended using the
overrides from the EILESOVERRIDES variable.

Notes

e Do not hand-edit the FILESPATH
variable. If you want the build system to
look in directories other than the defaults,
extend the FILESPATH variable by
using the FTTLESEXTRAPATHS
variable.

e Be aware that the default FTILESPATH
directories do not map to directories in
custom layers where append files
(.bbappend) are used. If you want the
build system to find patches or files that
reside with your append files, you need to
extend the FILESPATH variable by
using the FILESEXTRAPATHS
variable.

You can take advantage of this searching behavior in useful ways. For
example, consider a case where the following directory structure exists for
general and machine-specific configurations:

files/defconfig
files/MACHINEA/defconfig
files/MACHINEB/defconfig

Also in the example, the SRC URT statement contains
"file://defconfig". Given this scgnario, you can set MACHTNE to
"MACHINEA" and cause the build system to use files from
files/MACHINEA. set MACHINE to "MACHINEB" and the build
system uses files from £iles/MACHINEB. Finally, for any machine
other than "MACHINEA" and "MACHINEB", the build system uses files from
files/defconfig.

You can find out more about the patching process in the "Patching" section
in the Yocto Project Overview and Concepts Manual and the "Patching
Code" section in the Yocto Project Development Tasks Manual. See the
do_patch task as well.

Allows you to define your own file permissions settings table as part of
your configuration for the packaging process. For example, suppose you
need a consistent set of custom permissions for a set of groups and users
across an entire work project. It is best to do this in the packages
themselves but this is not always possible.

By default, the OpenEmbedded build system uses the £s—

perms. txt, which is located in the meta/files folder in the
Source Directory. If you create your own file permissions setting table,
you should place it in your layer or the distro's layer.

You define the FILESYSTEM PERMS TABLES variable in the
conf/local.conf file, which is found in the Build Directory, to

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

154/235

http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#patching-dev-environment
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#new-recipe-patching-code

3/4/2020

FONT_EXTRA_RDEPENDS

FONT_PACKAGESY|

FORCE_RO_REMOVE(

FULL_OPTIMIZATIONY|

GCCPIE

GCCVERSIONY|

GDBf|

GITDIRY

GLIBC_GENERATE_LOCALESS

GROUPADD_PARAMY|

Yocto Project Reference Manual

point to your custom fs—perms . txt. You can specify more than a
single file permissions setting table. The paths you specify to these files
must be defined within the BBPATH variable.

For guidance on how to create your own file permissions settings table
file, examine the existing fs—perms. txt.

When inheriting the fontcache class, this variable specifies the
runtime dependencies for font packages. By default, the
FONT EXTRA RDEPENDS is set to "fontconfig-utils".

When inheriting the font cache class, this variable identifies
packages containing font files that need to be cached by Fontconfig. By
default, the fontcache class assumes that fonts are in the recipe's
main package (i.e. $ { PN }). Use this variable if fonts you need are in a
package other than that main package.

Forces the removal of the packages listed in
ROOTFEFS RO _UNNEEDED during the generation of the root
filesystem.

Set the variable to "1" to force the removal of these packages.

The options to pass in TARGET CFEFLAGS and CELAGS when
compiling an optimized system. This variable defaults to "-O2 -pipe
${DEBUG_FLAGS}".

Enables Position Independent Executables (PIE) within the GNU C
Compiler (GCC). Enabling PIE in the GCC makes Return Oriented
Programming (ROP) attacks much more difficult to execute.

By default the security flags.inc file enables PIE by setting
the variable as follows:

GCCPIE ?= "--enable-default-pie"

Specifies the default version of the GNU C Compiler (GCC) used for
compilation. By default, GCCVERSTION is set to "8.x" in the
meta/conf/distro/include/tcmode-
default.inc include file:

GCCVERSION ?= "8.%"

You can override this value by setting it in a configuration file such as the
local.conf.

The minimal command and arguments to run the GNU Debugger.

The directory in which a local copy of a Git repository is stored when it is
cloned.

Specifies the list of GLIBC locales to generate should you not wish to
generate all LIBC locals, which can be time consuming.

Note

If you specifically remove the locale
en_US.UTF-8, you must set

IMAGE _LTINGUAS appropriately.

You can set GLTBC GENERATE LOCALES in your
local.conf file. By default, all locales are generated.

GLIBC_GENERATE_LOCALES = "en_GB.UTF-8 en_US.UTF-8"

When inheriting the useradd class, this variable specifies for a
package what parameters should be passed to the groupadd

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

155/235

3/4/2020

GROUPMEMS_PARAM(|

GRUB_GFXSERIAL|

GRUB_OPTSY|

GRUB_TIMEOUTY|

GTKIMMODULES_PACKAGESS|

HOMEPAGES

HOST_ARCHY

HOST_CC_ARCHY|

HOST_0S

Yocto Project Reference Manual

command if you wish to add a group to the system when the package is
installed.

Here is an example from the dbus recipe:

GROUPADD_PARAM_${PN} = "-r netdev"

For information on the standard Linux shell command groupadd, see
http://linux.die.net/man/8/groupadd.

When inheriting the useradd class, this variable specifies for a
package what parameters should be passed to the groupmems
command if you wish to modify the members of a group when the
package is installed.

For information on the standard Linux shell command groupmems,
see http://linux.die.net/man/8/groupmems.

Configures the GNU GRand Unified Bootloader (GRUB) to have graphics
and serial in the boot menu. Set this variable to "1" in your
local.conf ordistribution configuration file to enable graphics and
serial in the menu.

See the grub—efi class for more information on how this variable is
used.

Additional options to add to the GNU GRand Unified Bootloader (GRUB)
configuration. Use a semi-colon character (;) to separate multiple
options.

The GRUB_OPTS variable is optional. See the grub-efi class for
more information on how this variable is used.

Specifies the timeout before executing the default LABEL in the GNU
GRand Unified Bootloader (GRUB).

The GRUB_TIMEOUT variable is optional. See the grub—efi class
for more information on how this variable is used.

When inheriting the gt k—immodules—-cache class, this variable
specifies the packages that contain the GTK+ input method modules being
installed when the modules are in packages other than the main package.

Website where more information about the software the recipe is building
can be found.

The name of the target architecture, which is normally the same as
TARGET ARCH. The OpenEmbedded build system supports many
architectures. Here is an example list of architectures supported. This list
is by no means complete as the architecture is configurable:

arm
i586
x86_64
powerpc
powerpc64
mips
mipsel

Specifies architecture-specific compiler flags that are passed to the C
compiler.

Default initialization for HOST CC _ARCH varies depending on what is
being built:

o« TARGET CC_ARCH when building for the target

« BUILD CC_ ARCH when building for the build host (i.e. =
native)

e BUILDSDK CC_ARCH when building for an SDK (i.e.
nativesdk-)

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

http://linux.die.net/man/8/groupadd
http://linux.die.net/man/8/groupmems

3/4/2020 Yocto Project Reference Manual

Specifies the name of the target operating system, which is normally the
same as the TARGET OS. The variable can be set to "linux" for
glibc-based systems_and to "linux-musl" for mus 1. For ARM/EABI
targets, there are also "linux-gnueabi" and "linux-musleabi" values
possible.

HOST_PREFIXY|
Specifies the prefix for the cross-compile toolchain. HOST PREFIX s

normally the same as TARGET PREFTX.

HOST_SYS
Specifies the system, including the architecture and the operating system,
for which the build is occurring in the context of the current recipe.

The OpenEmbedded build system automatically sets this variable based on
HOST ARCH, HOST VENDOR, and HOST OS variables.

Note

You do not need to set the variable yourself.

Consider these two examples:

e Given a native recipe on a 32-bit x86 machine running Linux, the value
is "i686-linux".

e Given a recipe being built for a little-endian MIPS target running Linux,
the value might be "mipsel-linux".

HOSTTOOLSY|
A space-separated list (filter) of tools on the build host that should be
allowed to be called from within build tasks. Using this filter helps reduce
the possibility of host contamination. If a tool specified in the value of
HOSTTOOLS is not found on the build host, the OpenEmbedded build
system produces an error and the build is not started.

For additional information, see HOSTTOOLS NONFATAL.

HOSTTOOLS_NONFATAL|
A space-separated list (filter) of tools on the build host that should be
allowed to be called from within build tasks. Using this filter helps reduce
the possibility of host contamination. Unlike HOSTTOOLS, the
OpenEmbedded build system does not produce an error if a tool specified
in the value of HOSTTOOLS NONFATAL is not found on the build
host. Thus, you can use HOSTTOOLS NONFATAL to filter optional
host tools.

HOST_VENDORY|
Specifies the name of the vendor. HOST VENDOR is normally the

same as TARGET VENDOR.

ICECC_DISABLEDY|
Disables or enables the 1 cecc (Icecream) function. For more

information on this function and best practices for using this variable, see
the "icecc.bbclass" section.

Setting this variable to "1" in your Local . conf disables the
function:

ICECC_DISABLED ??= "1"

To enable the function, set the variable as follows:

ICECC_DISABLED = ""

ICECC_ENV_EXECY
Points to the 1cecc—create—env script that you provide. This
variable is used by the 1. cecc class. You set this variable in your
local.conf file.

If you do not point to a script that you provide, the OpenEmbedded build
system uses the default script provided by the icecc—-create-
env . bb recipe, which is a modified version and not the one that comes
with icecc.

ICECC_PARALLEL_MAKES|

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 157/235

3/4/2020

ICECC_PATHY|

ICECC_USER_CLASS_BLY|

ICECC_USER_PACKAGE_BLY

ICECC_USER_PACKAGE_WLY|

IMAGE_BASENAME(

IMAGE_BOOT_FILESY|

Yocto Project Reference Manual

Extra options passed to the make command during the

do compi le task that specify parallel compilation. This variable
usualy takes the form of "-j x", where x represents the maximum number
of parallel threads ma ke can run.

Note

The options passed affect builds on all enabled
machines on the network, which are machines

running the 1 ceccd daemon.

If your enabled machines support multiple cores, coming up with the
maximum number of parallel threads that gives you the best performance
could take some experimentation since machine speed, network lag,
available memory, and existing machine loads can all affect build time.
Consequently, unlike the PARALLET MAKE variable, there is no rule-
of-thumb for setting ICECC PARALLEL MAKE to achieve optimal
performance. a n

If you do not set ICECC_PARALLEL MAKE, the build system does
not use it (i.e. the system does not detect and assign the number of cores
as is done with PARALLEL MAKE).

The location of the 1. cecc binary. You can set this variable in your
local.conf file. If your local.conf file does not define this
variable, the 1. cecc class attempts to define it by locating icecc
using which.

Identifies user classes that you do not want the Icecream distributed
compile support to consider. This variable is used by the 1 cecc class.
You set this variable in your 1local . conf file.

When you list classes using this variable, you are "blacklisting" them from
distributed compilation across remote hosts. Any classes you list will be
distributed and compiled locally.

Identifies user recipes that you do not want the Icecream distributed
compile support to consider. This variable is used by the icecc class.
You set this variable in your 1ocal.conf file.

When you list packages using this variable, you are "blacklisting" them
from distributed compilation across remote hosts. Any packages you list
will be distributed and compiled locally.

Identifies user recipes that use an empty PARALLET, MAKE variable
that you want to force remote distributed compilation on using the
Icecream distributed compile support. This variable is used by the
icecc class. You set this variable in your 1local . conf file.

The base name of image output files. This variable defaults to the recipe
name ($ { PN }).

A space-separated list of files installed into the boot partition when
preparing an image using the Wic tool with the bootimg—
partition source plugin. By default, the files are installed under the
same name as the source files. To change the installed name, separate it
from the original name with a semi-colon (;). Source files need to be
located in DEPT.OY DIR TMAGE. Here are two examples:

IMAGE_BOOT_FILES = "u-boot.img uImage;kernel™
IMAGE_BOOT_FILES = "u-boot.${UBOOT_SUFFIX} ${KERNEL_IMAGETYPE}"

Alternatively, source files can be picked up using a glob pattern. In this
case, the destination file must have the same name as the base name of
the source file path. To install files into a directory within the target
location, pass its name after a semi-colon (;). Here are two examples:

IMAGE_BOOT_FILES = "bcm2835-bootfiles/*"
IMAGE_BOOT_FILES = "bcm2835-bootfiles/*;boot/"

The first example installs all files from
S { DEPLOY DIR IMAGE } /bcm2835-bootfiles into the

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

158/235

3/4/2020

IMAGE_CLASSESY|

IMAGE_CMDY|

IMAGE_DEVICE_TABLESY|

IMAGE_FEATURESS

IMAGE_FSTYPESY|

Yocto Project Reference Manual

root of the target partition. The second example installs the same files
into a boot directory within the target partition.

You can find information on how to use the Wic tool in the "Creating
Partitioned Images Using_Wic" section of the Yocto Project Development
Tasks Manual. Reference material for Wic is located in the
"OpenEmbedded Kickstart (.wks)_Reference" chapter.

A list of classes that all images should inherit. You typically use this
variable to specify the list of classes that register the different types of
images the OpenEmbedded build system creates.

The default value for IMAGE CLASSES is image_ types. You
can set this variable in your 1ocal .conf orin a distribution
configuration file.

For more information, see
meta/classes/image types.bbclass inthe Source
Directory.

Specifies the command to create the image file for a specific image type,
which corresponds to the value set set in IMAGE FSTYPES, (e.g.
ext3,btrfs, and so forth). When setting this variable, you should
use an override for the associated type. Here is an example:

IMAGE_CMD_jffs2 = "mkfs.jffs2 --root=${IMAGE_ROOTFS} \

--faketime --output=${DEPLOY_DIR_IMAGE}/${IMAGE_NAME}.rootfs.

${EXTRA_IMAGECMD}"
< »

You typically do not need to set this variable unless you are adding
support for a new image type. For more examples on how to set this
variable, see the image types class file, which is
meta/classes/image types.bbclass.

Specifies one or more files that contain custom device tables that are
passed to the makedevs command as part of creating an image.
These files list basic device nodes that should be created under /dev
within the image. If IMAGE DEVICE TABLES is not set,
files/device table-minimal.txt isused, which is
located by BBPATH. For details on how you should write device table
files, seemeta/files/device table-minimal.txt
as an example. o

The primary list of features to include in an image. Typically, you configure
this variable in an image recipe. Although you can use this variable from
your local .conf file, which is found in the Build Directory, best
practices dictate that you do not.

Note

To enable extra features from outside the image
recipe, use the
EXTRA TMAGE FEATURES variable.

For a list of image features that ships with the Yocto Project, see the
"Image Features" section.

For an example that shows how to customize your image by using this
variable, see the "Customizing Images Using_Custom
IMAGE_FEATURES and EXTRA_IMAGE_FEATURES" section
in the Yocto Project Development Tasks Manual.

Specifies the formats the OpenEmbedded build system uses during the
build when creating the root filesystem. For example, setting

IMAGE FSTYPES as follows causes the build system to create root
filesystems using two formats: .ext3 and .tar.bz2:

IMAGE_FSTYPES = "ext3 tar.bz2"

For the complete list of supported image formats from which you can
choose, see IMAGE,_TYPES.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

159/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#creating-partitioned-images-using-wic
http://www.yoctoproject.org/docs/3.1/ref-manual/ref-manual.html#ref-kickstart
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#usingpoky-extend-customimage-imagefeatures

3/4/2020 Yocto Project Reference Manual

IMAGE_INSTALLY|

Used by recipes to specify the packages to install into an image through
ge class. Use the IMAGE TINSTALL variable with care to

the ima

Notes

If an image recipe uses the "inherit image"
line and you are setting

IMAGE FSTYPES inside the recipe,
you must set IMAGE FSTYPES prior
to using the "inherit im;ge" line.

Due to the way the OpenEmbedded build
system processes this variable, you cannot
update its contents by using _append or
__prepend. You must use the +=
operator to add one or more options to the
IMAGE FSTYPES variable.

avoid ordering issues.

Image recipes set IMAGE INSTALL to specify the packages to
install into an image through image.bbclass. Additionally,
"helper" classes such as the core—imagg class exist that can take
lists used with IMAGE, FEATURES and turn them into auto-
generated entries in IMTAGE_INSTALL in addition to its default

contents.

When you use this variable, it is best to use it as follows:

IMAGE_INSTALL_append = " package-name"

Be sure to include the space between the quotation character and the

start of the package name or names.

IMAGE_LINGUASS

Specifies the list of locales to install into the image during the root
filesystem construction process. The OpenEmbedded build system

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

Caution

When working with a core—image—
minimal-initramfs image, do
not use the IMAGE INSTALL variable
to specify packages for installation. Instead,
use the PACKAGE INSTALL variable,
which allows the initial RAM filesystem
(initramfs) recipe to use a fixed set of
packages and not be affected by

IMAGE INSTALL. For information on
creating an initramfs, see the "Building_an
Initial RAM Filesystem (initramfs) Image"
section in the Yocto Project Development
Tasks Manual.

Using IMAGE INSTALL with the +=
BitBake operat<; within the
/conf/local.conf file or from
within an image recipe is not
recommended. Use of this operator in these
ways can cause ordering issues. Since
core-image.bbclass sets
IMAGE INSTALL to a default value
using the_E operator, using a +=
operation against IMAGE INSTALL
results in unexpected behavior when used
within conf/local.conf.
Furthermore, the same operation from
within an image recipe may or may not
succeed depending on the specific situation.
In both these cases, the behavior is
contrary to how most users expect the +=
operator to work.

160/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#building-an-initramfs-image
http://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html#appending-and-prepending
http://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html#setting-a-default-value

3/4/2020

IMAGE_MANIFESTY|

IMAGE_NAME(|

IMAGE_OVERHEAD_FACTORY]

IMAGE_PKGTYPE|

Yocto Project Reference Manual

automatically splits locale files, which are used for localization, into
separate packages. Setting the IMAGE LINGUAS variable ensures
that any locale packages that correspond_to packages already selected for
installation into the image are also installed. Here is an example:

IMAGE_LINGUAS = "pt-br de-de"

In this example, the build system ensures any Brazilian Portuguese and
German locale files that correspond to packages in the image are installed
(i.,e. *~locale-pt-brand *~locale—-de—-de as well as *—
locale-pt and *~1ocale-de, since some software packages
only provide locale files by language and not by country-specific
language).

See the GLIBC GENERATE TLOCALES variable for information
on generating GLIBC locales.

The manifest file for the image. This file lists all the installed packages
that make up the image. The file contains package information on a line-
per-package basis as follows:

packagename packagearch version

The 1mage class defines the manifest file as follows:

IMAGE_MANIFEST = "${DEPLOY_DIR_IMAGE}/${IMAGE_NAME}.rootfs.manif
< >

The location is derived using the DEPTL.OY DIR TMAGE and
IMAGE NAME variables. You can find information on how the image is
created in the "Image Generation" section in the Yocto Project Overview
and Concepts Manual.

The name of the output image files minus the extension. This variable is
derived using the IMAGE_BASENAME, MACHTNE, and
DATETTIME variables:

IMAGE_NAME = "${IMAGE_BASENAME}-${MACHINE}-${DATETIME}"

Defines a multiplier that the build system applies to the initial image size
for cases when the multiplier times the returned disk usage value for the
image is greater than the sum of IMAGE ROOTES STZE and
IMAGE _ROOTES EXTRA SPACE. The result of the multiplier
applied to the initial in?age size creates free disk space in the image as
overhead. By default, the build process uses a multiplier of 1.3 for this
variable. This default value results in 30% free disk space added to the
image when this method is used to determine the final generated image
size. You should be aware that post install scripts and the package
management system uses disk space inside this overhead area.
Consequently, the multiplier does not produce an image with all the
theoretical free disk space. See IMAGE ROOTES STZE for
information on how the build system determines the overall image size.

The default 30% free disk space typically gives the image enough room to
boot and allows for basic post installs while still leaving a small amount of
free disk space. If 30% free space is inadequate, you can increase the
default value. For example, the following setting gives you 50% free space
added to the image:

IMAGE_OVERHEAD_FACTOR = "1.5"

Alternatively, you can ensure a specific amount of free disk space is added
to the image by using the IMAGE ROOTFEFS EXTRA SPACE
variable.

Defines the package type (i.e. DEB, RPM, IPK, or TAR) used by the
OpenEmbedded build system. The variable is defined appropriately by the
rackage deb, package rpm, package ipk, or

kaage_tar class.

Warning
The package tar class is broken and is
not supported. It is recommended that you do

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 161/235

http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#image-generation-dev-environment

3/4/2020

IMAGE_POSTPROCESS_COMMAND{|

IMAGE_PREPROCESS_COMMAND{|

IMAGE_ROOTFS(|

IMAGE_ROOTFS_ALIGNMENTY|

IMAGE_ROOTFS_EXTRA_SPACES

IMAGE_ROOTFS_SIZE|

Yocto Project Reference Manual

not use it.

The populate sdk * and image classes use the
IMAGE PKGTYPE for packaging up images and SDKs.

You should not set the IMAGE PKGTYPE manually. Rather, the
variable is set indirectly through the appropriate package * class
using the PACKAGE CLASSES variable. The OpenEmbeEded build
system uses the first package type (e.g. DEB, RPM, or IPK) that appears
with the variable

Note

Files using the . tar format are never used as

a substitute packaging format for DEB, RPM, and
IPK formatted files for your image or SDK.

Specifies a list of functions to call once the OpenEmbedded build system
creates the final image output files. You can specify functions separated
by semicolons:

IMAGE_POSTPROCESS_COMMAND += "function; ... "

If you need to pass the root filesystem path to a command within the
function, you can use $ { IMAGE ROOQOTES}, which points to the
directory that becomes the root filesystem image. See the
IMAGE_ROOTE'S variable for more information.

Specifies a list of functions to call before the OpenEmbedded build system
creates the final image output files. You can specify functions separated
by semicolons:

IMAGE_PREPROCESS_COMMAND += "function; ... "

If you need to pass the root filesystem path to a command within the
function, you can use $ { IMAGE ROOTES}, which points to the
directory that becomes the root filesystem image. See the

IMAGE ROOTE'S variable for more information.

The location of the root filesystem while it is under construction (i.e.
during the doirootfs task). This variable is not configurable. Do not
change it.

Specifies the alignment for the output image file in Kbytes. If the size of
the image is not a multiple of this value, then the size is rounded up to
the nearest multiple of the value. The default value is "1". See

IMAGE _ROOTES STZF for additional information.

Defines additional free disk space created in the image in Kbytes. By
default, this variable is set to "0". This free disk space is added to the
image after the build system determines the image size as described in
IMAGE ROOTES STZE.

This variable is particularly useful when you want to ensure that a specific
amount of free disk space is available on a device after an image is
installed and running. For example, to be sure 5 Gbytes of free disk space
is available, set the variable as follows:

IMAGE_ROOTFS_EXTRA_SPACE = "5242880"

For example, the Yocto Project Build Appliance specifically requests 40
Gbytes of extra space with the line:

IMAGE_ROOTFS_EXTRA_SPACE = "41943040"

Defines the size in Kbytes for the generated image. The OpenEmbedded
build system determines the final size for the generated image using an
algorithm that takes into account the initial disk space used for the
generated image, a requested size for the image, and requested additional

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

162/235

3/4/2020

IMAGE_TYPEDEP|

IMAGE_TYPESS

INC_PRY

Yocto Project Reference Manual

free disk space to be added to the image. Programatically, the build
system determines the final size of the generated image as follows:

if (image-du * overhead) < rootfs-size:
internal-rootfs-size = rootfs-size + xspace

else:
internal-rootfs-size = (image-du * overhead) + xspace

where:

image-du = Returned value of the du command on
the image.

overhead = IMAGE_OVERHEAD_FACTOR
rootfs-size = IMAGE_ROOTFS_SIZE

internal-rootfs-size = Initial root filesystem
size before any modifications.

xspace = IMAGE_ROOTFS_EXTRA_SPACE
See the IMAGE _OVERHEAD FACTOR and

IMAGE _ROOTFES EXTRA SPACE variables for related
information.

Specifies a dependency from one image type on another. Here is an
example from the image—11ive class:

IMAGE_TYPEDEP_live = "ext3"

In the previous example, the variable ensures that when "live" is listed
with the IMAGE F'STYPES variable, the OpenEmbedded build
system produces an €xt 3 image first since one of the components of
the live image is an ext 3 formatted partition containing the root
filesystem.

Specifies the complete list of supported image types by default:

btrfs
container
cpio
cpio.gz
cpio.lz4
cpio.lzma
cpio.xz
cramfs
elf

ext2
ext2.bz2
ext2.gz
ext2.1lzma
ext3
ext3.gz
ext4
ext4.gz
f2fs
hddimg
iso

jffs2
jffs2.sum
multiubi
squashfs
squashfs-1z4
squashfs-1zo
squashfs-xz
tar
tar.bz2
tar.gz
tar.1z4
tar.xz
ubi

ubifs

wic
wic.bz2
wic.gz
wic.lzma

For more information about these types of images, see

meta/classes/image types*.bbclass inthe Source

Directory.

Helps define the recipe revision for recipes that share a common
include file. You can think of this variable as part of the recipe
revision as set from within an include file.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

163/235

3/4/2020

INCOMPATIBLE_LICENSES|

INHERITY|

INHERIT_DISTROf|

INHIBIT_DEFAULT_DEPSY|

INHIBIT_PACKAGE_DEBUG_SPLIT|

Yocto Project Reference Manual

Suppose, for example, you have a set of recipes that are used across
several projects. And, within each of those recipes the revision (its PR
value) is set accordingly. In this case, when the revision of those recipes
changes, the burden is on you to find all those recipes and be sure that
they get changed to reflect the updated version of the recipe. In this
scenario, it can get complicated when recipes that are used in many
places and provide common functionality are upgraded to a new revision.

A more efficient way of dealing with this situation is to set the INC PR
variable inside the include files that the recipes share and then
expand the INC PR variable within the recipes to help define the recipe
revision.

The following provides an example that shows how to use the INC PR
variable given a common include file that defines the variable. Once
the variable is defined in the include file, you can use the variable to
set the PR values in each recipe. You will notice that when you set a
recipe's PR you can provide more granular revisioning by appending
values to the INC PR variable:

recipes-graphics/xorg-font/xorg-font-common.inc:INC_PR = "r2"

recipes-graphics/xorg-font/encodings_1.0.4.bb:PR = "${INC_PR}.1"
recipes-graphics/xorg-font/font-util_1.3.0.bb:PR = "${INC_PR}.0"
recipes-graphics/xorg-font/font-alias_1.0.3.bb:PR = "${INC_PR}.2

< »

The first line of the example establishes the baseline revision to be used
for all recipes that use the 1nclude file. The remaining lines in the
example are from individual recipes and show how the PR value is set.

Specifies a space-separated list of license names (as they would appear in
LTICENSE) that should be excluded from the build. Recipes that provide
no alternatives to listed incompatible licenses are not built. Packages that
are individually licensed with the specified incompatible licenses will be
deleted.

Note

This functionality is only regularly tested using
the following setting:

INCOMPATIBLE_LICENSE = "GPL-3.0 LGPL-3.0
< >

Although you can use other settings, you might
be required to remove dependencies on or
provide alternatives to components that are
required to produce a functional system image.

Causes the named class or classes to be inherited globally. Anonymous
functions in the class or classes are not executed for the base
configuration and in each individual recipe. The OpenEmbedded build
system ignores changes to INHERTIT in individual recipes.

For more information on INHERIT, see the "INHERTT Configuration
Directive" section in the Bitbake User Manual.

Lists classes that will be inherited at the distribution level. It is unlikely
that you want to edit this variable.

The default value of the variable is set as follows in the
meta/conf/distro/defaultsetup.conf file:

INHERIT_DISTRO ?= "debian devshell sstate license"

Prevents the default dependencies, namely the C compiler and standard C
library (libc), from being added to DEPENDS. This variable is usually
used within recipes that do not require any compilation using the C
compiler.

Set the variable to "1" to prevent the default dependencies from being
added.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

164/235

http://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html#inherit-configuration-directive

3/4/2020

INHIBIT_PACKAGE_STRIPY|

INHIBIT_SYSROOT_STRIP

INITRAMFS_FSTYPES

INITRAMFS_IMAGES

Yocto Project Reference Manual

Prevents the OpenEmbedded build system from splitting out debug
information during packaging. By default, the build system splits out
debugging information during the d0 _package task. For more
information on how debug information is split out, see the
PACKAGE_DEBUG_S PLIT_STYLE variable.

To prevent the build system from splitting out debug information during
packaging, set the INHIBIT_PACKAGE_DEBUG_S PLIT
variable as follows:

INHIBIT_PACKAGE_DEBUG_SPLIT = "1"

If set to "1", causes the build to not strip binaries in resulting packages
and prevents the —dbg package from containing the source files.

By default, the OpenEmbedded build system strips binaries and puts the
debugging symbols into $ { PN } —=dbg. Consequently, you should not
set INHIBIT PACKAGE STRIP when you plan to debug in
general.

If set to "1", causes the build to not strip binaries in the resulting sysroot.

By default, the OpenEmbedded build system strips binaries in the
resulting sysroot. When you specifically set the

INHIBIT SYSROOT_ STRIP variable to "1" in your recipe, you
inhibit this stripping.

If you want to use this variable, include the staging class. This class
usesa Sys_strip () function to test for the variable and acts
accordingly.

Note
Use of the INHIBIT SYSROOT STRIP

variable occurs in rare and special
circumstances. For example, suppose you are
building bare-metal firmware by using an
external GCC toolchain. Furthermore, even if the
toolchain's binaries are strippable, other files
exist that are needed for the build that are not
strippable.

Defines the format for the output image of an initial RAM filesystem
(initramfs), which is used during boot. Supported formats are the same as
those supported by the IMAGE _F'STYPES variable.

The default value of this variable, which is set in the
meta/conf/bitbake.conf configuration file in the Source
Directory, is "cpio.gz". The Linux kernel's initramfs mechanism, as
opposed to the initial RAM filesystem initrd mechanism, expects an
optionally compressed cpio archive.

Specifies the PROVIDES name of an image recipe that is used to build
an initial RAM filesystem (initramfs) image. In other words, the
INITRAMFS TIMAGE variable causes an additional recipe to be built
as a dependency to whatever root filesystem recipe you might be using
(e.g. core—image—sato). The initramfs image recipe you provide
should set IMAGE_FSTYPES to INITRAMFS_FSTYPES.

An initramfs image provides a temporary root filesystem used for early
system initialization (e.g. loading of modules needed to locate and mount
the "real" root filesystem).

Note

Seethemeta/recipes-
core/images/core-image-
minimal-initramfs.Dbb recipein the

Source Directory for an example initramfs
recipe. To select this sample recipe as the one
built to provide the initramfs image, set
INITRAMFES IMAGE to "core-image-

minimal-initramfs".

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

165/235

https://en.wikipedia.org/wiki/Initrd

3/4/2020

INITRAMFS_IMAGE_BUNDLES|

INITRAMFS_LINK_NAMES|

INITRAMFS_NAMES|

Yocto Project Reference Manual

You can also find more information by referencing the meta—
poky/conf/local.conf.sample.extended
configuration file in the Source Directory, the Mgg class, and the
kernel class to see how to use the INITRAMF'S IMAGE
variable.

If INITRAMFS TMAGE is empty, which is the default, then no
initramfs image is built.

For more information, you can also see the

INTTRAME'S TMAGE BUNDLE variable, which allows the
generated image to be bundled inside the kernel image. Additionally, for
information on creating an initramfs image, see the "Building_an Initial
RAM Filesystem (initramfs)_Image" section in the Yocto Project
Development Tasks Manual.

Controls whether or not the image recipe specified by

INTTRAME'S TMAGE is run through an extra pass
(do_bundle initramfs) during kernel compilation in order to
build a single binary that contains both the kernel image and the initial
RAM filesystem (initramfs) image. This makes use of the

CONFT G_INI TRAMFS_SOURCE kernel feature.

Note

Using an extra compilation pass to bundle the
initramfs avoids a circular dependency between
the kernel recipe and the initramfs recipe should
the initramfs include kernel modules. Should
that be the case, the initramfs recipe depends
on the kernel for the kernel modules, and the
kernel depends on the initramfs recipe since the
initramfs is bundled inside the kernel image.

The combined binary is deposited into the tmp/deploy directory,
which is part of the Build Directory.

Setting the variable to "1" in a configuration file causes the
OpenEmbedded build system to generate a kernel image with the
initramfs specified in INITRAME'S TMAGE bundled within:

INITRAMFS_IMAGE_BUNDLE = "1"

By default, the kernel class sets this variable to a null string as
follows:

INITRAMFS_IMAGE_BUNDLE ?= ""

Note
You must set the
INITRAMFS IMAGEiBUNDLE variable

ina configuratio;file. You cannot set the
variable in a recipe file.

Seethe Local.conf.sample.extended file for additional
information. Also, for information on creating an initramfs, see the
"Building_an Initial RAM Filesystem (initramfs) Image" section in the Yocto
Project Development Tasks Manual.

The link name of the initial RAM filesystem image. This variable is set in
themeta/classes/kernel-artifact-
names.bbclass file as follows:

INITRAMFS_LINK_NAME ?= "initramfs-${KERNEL_ARTIFACT_LINK_NAME}"

The value of the KERNEL ARTIFACT LINK NAME variable,
which is set in the same file, has the following value:

KERNEL_ARTIFACT_LINK_NAME ?= "${MACHINE}"

See the MACHINE variable for additional information.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

166/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#building-an-initramfs-image
http://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/meta-poky/conf/local.conf.sample.extended
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#building-an-initramfs-image

3/4/2020 Yocto Project Reference Manual

The base name of the initial RAM filesystem image. This variable is set in
themeta/classes/kernel-artifact-
names.bbclass file as follows:

INITRAMFS_NAME ?= "initramfs-${KERNEL_ARTIFACT_NAME}"

The value of the KERNEL_ARTIFACT_NAME variable, which is set
in the same file, has the following value:

KERNEL_ARTIFACT_NAME 2= "${PKGE}-${PKGV}-${PKGR}-${MACHINE}${IMA
< »

INITRD|
Indicates list of filesystem images to concatenate and use as an initial

RAM disk (1nitrd).

The INITRD variable is an optional variable used with the image—
live class.

INITRD_IMAGESY
When building a "live" bootable image (i.e. when IMAGE FSTYPKS
contains "live"), INTTRD TMAGE specifies the image recipe that
should be built to provide the initial RAM disk image. The default value is
"core-image-minimal-initramfs".

See the image—1ive class for more information.

INITSCRIPT_NAMES|
The filename of the initialization script as installed to

${sysconfdir}/init.d.

This variable is used in recipes when using update—
rc.d.bbclass. The variable is mandatory.

INITSCRIPT_PACKAGESY|
A list of the packages that contain initscripts. If multiple packages are

specified, you need to append the package name to the other
INITSCRIPT * asan override.

This variable is used in recipes when using update—
rc.d.bbclass. The variable is optional and defaults to the PN
variable.

INITSCRIPT_PARAMSY
Specifies the options to pass to update—rc . d. Here is an example:

INITSCRIPT_PARAMS = "start 99 5 2 . stop 20 @16 ."

In this example, the script has a runlevel of 99, starts the script in
initlevels 2 and 5, and stops the script in levels 0, 1 and 6.

The variable's default value is "defaults", which is set in the Llpdate—
rc.d class.

The value in INITSCRIPT PARAMS is passed through to the
update-rc.d command. For more information on valid parameters,
please see the update—rc.d manual page at
http://www.tin.org/bin/man.cgi?section=8&topic=update-rc.d.

INSANE_SKIPY|
Specifies the QA checks to skip for a specific package within a recipe. For
example, to skip the check for symbolic link . SO files in the main
package of a recipe, add the following to the recipe. The package name
override must be used, which in this example is S { PN } :

INSANE_SKIP_${PN} += "dev-so"

See the "insane .bbclass" section for a list of the valid QA checks
you can specify using this variable.

INSTALL_TIMEZONE_FILEY
By default, the tzdata recipe packages an /etc/timezone file.
Set the INSTALL TIMEZONE FILE variable to "0" at the
configuration level to disable this behavior.

IPK_FEED_URIS|
When the IPK backend is in use and package management is enabled on

the target, you can use this variable to set up opkg in the target image
to point to package feeds on a nominated server. Once the feed is
established, you can perform installations or upgrades using the package
manager at runtime.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 167/235

http://www.tin.org/bin/man.cgi?section=8&topic=update-rc.d

3/4/2020

KARCHY|

KBRANCHY|

KBUILD_DEFCONFIGS

KERNEL_ALT_IMAGETYPEY

Yocto Project Reference Manual

Defines the kernel architecture used when assembling the configuration.
Architectures supported for this release are:

powerpc
i386
x86_64
arm
gemu
mips

You define the KARCH variable in the BSP Descriptions.

A regular expression used by the build process to explicitly identify the
kernel branch that is validated, patched, and configured during a build.
You must set this variable to ensure the exact kernel branch you want is
being used by the build process.

Values for this variable are set in the kernel's recipe file and the kernel's
append file. For example, if you are using the 1 inux—-yocto 4.12
kernel, the kernel recipe file is the meta/recipes— N
kernel/linux/linux-yocto 4.12.Dbb file. KBRANCH
is set as follows in that kernel recipe file: -

KBRANCH ?= "standard/base"

This variable is also used from the kernel's append file to identify the
kernel branch specific to a particular machine or target hardware.
Continuing with the previous kernel example, the kernel's append file (i.e.
linux-yocto 4.12.bbappend)is located in the BSP layer
for a given machine. For example, the append file for the Beaglebone,
EdgeRouter, and generic versions of both 32 and 64-bit IA machines
(meta-yocto-bsp)is named meta-yocto-
bsp/recipes-kernel/linux/linux-—

yocto 4.12.bbappend. Here are the related statements from
that appe_nd file:

KBRANCH_genericx86 = "standard/base"
KBRANCH_genericx86-64 = "standard/base"
KBRANCH_edgerouter = "standard/edgerouter"

KBRANCH_beaglebone = "standard/beaglebone"
KBRANCH_mpc8315e-rdb = "standard/fsl-mpc8315e-rdb"

The KBRANCH statements identify the kernel branch to use when
building for each supported BSP.

When used with the kernel —yocto class, specifies an "in-tree"
kernel configuration file for use during a kernel build.

Typically, when using a defconfig to configure a kernel during a
build, you place the file in your layer in the same manner as you would
place patch files and configuration fragment files (i.e. "out-of-tree").
However, if you want to use a defconf i file that is part of the
kernel tree (i.e. "in-tree"), you can use the KBUILD DEFCONFIG
variable and append the KMACHTNE variable to point to the
defconfigfile.

To use the variable, set it in the append file for your kernel recipe using
the following form:

KBUILD_DEFCONFIG_KMACHINE ?= defconfig_file

Here is an example from a "raspberrypi2" KMACHINE build that uses a
defconfig file named "bcm2709_defconfig":

KBUILD_DEFCONFIG_raspberrypi2 = "bcm2709_defconfig"

As an alternative, you can use the following within your append file:

KBUILD_DEFCONFIG_pn-linux-yocto ?= defconfig_file

For more information on how to use the KBUTLD DEFCONFIG
variable, see the "Using_an "In-Tree" de fconfig File" section in the
Yocto Project Linux Kernel Development Manual.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

168/235

http://www.yoctoproject.org/docs/3.1/kernel-dev/kernel-dev.html#bsp-descriptions
http://www.yoctoproject.org/docs/3.1/kernel-dev/kernel-dev.html#using-an-in-tree-defconfig-file

3/4/2020 Yocto Project Reference Manual

Specifies an alternate kernel image type for creation in addition to the
kernel image type specified using the KERNEL_IMAGETYPE
variable.

KERNEL_ARTIFACT_NAME(|
Specifies the name of all of the build artifacts. You can change the name

of the artifacts by changing the KERNEL ARTIFACT NAME
variable.

The value of KERNEL ARTIFACT NAME, which is set in the
meta/classes/kernel-artifact-
names .bbclass file, has the following default value:

KERNEL_ARTIFACT_NAME ?= "${PKGE}-${PKGV}-${PKGR}-${MACHINE}${IMA
< »

See the PKGE, PKGV, PKGR, and MACHINE variables for additional
information.

Note
The IMAGE _VERSTION SUFFIX variable
is set to DATET IME..

KERNEL_CLASSESY|
A list of classes defining kernel image types that the kernel class

should inherit. You typically append this variable to enable extended
image types. An example is the "kernel-fitimage", which enables fitimage
support and resides inmeta/classes/kernel -
fitimage.bbclass. You can register custom kernel image types
with the kernel class using this variable.

KERNEL_DEVICETREE
Specifies the name of the generated Linux kernel device tree (i.e. the

. dtb) file.

Note

Legacy support exists for specifying the full path
to the device tree. However, providing just the
. dtb file is preferred.

In order to use this variable, the kernel —-devicetree class must
be inherited.

KERNEL_DTB_LINK_NAMEY
The link name of the kernel device tree binary (DTB). This variable is set

inthemeta/classes/kernel-artifact-
names.bbclass file as follows:

KERNEL_DTB_LINK_NAME 2= "${KERNEL_ARTIFACT_LINK_NAME}"

The value of the KERNEL_ARTIFACT_LINK_NAME variable,
which is set in the same file, has the following value:

KERNEL_ARTIFACT_LINK_NAME ?= "${MACHINE}"

See the MACHINE variable for additional information.

KERNEL_DTB_NAMEY
The base name of the kernel device tree binary (DTB). This variable is set

inthemeta/classes/kernel-artifact-
names .bbclass file as follows:

KERNEL_DTB_NAME ?= "${KERNEL_ARTIFACT_NAME}"

The value of the KERNEL_ARTIFACT_NAME variable, which is set
in the same file, has the following value:

KERNEL_ARTIFACT_NAME 2= "${PKGE}-${PKGV}-${PKGR}-${MACHINE}${IMA
< »

KERNEL_EXTRA_ARGSY|

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 169/235

3/4/2020 Yocto Project Reference Manual

Specifies additional ma ke command-line arguments the OpenEmbedded
build system passes on when compiling the kernel.

KERNEL_FEATURESY|
Includes additional kernel metadata. In the OpenEmbedded build system,
the default Board Support Packages (BSPs) Metadata is provided through
the KMACHTINE and KBRANCH variables. You can use the
KERNEL_FEATURES variable from within the kernel recipe or kernel
append file to further add metadata for all BSPs or specific BSPs.

The metadata you add through this variable includes config fragments and
features descriptions, which usually includes patches as well as config
fragments. You typically override the KERNEL FEATURES variable
for a specific machine. In this way, you can provﬁe validated, but
optional, sets of kernel configurations and features.

For example, the following example from the 1 inux-yocto-

rt 4.12 kernel recipe adds "netfilter" and "taskstats" features to all
BSPs as well as "virtio" configurations to all QEMU machines. The last two
statements add specific configurations to targeted machine types:

KERNEL_EXTRA_FEATURES ?= "features/netfilter/netfilter.scc feati

KERNEL_FEATURES_append = " ${KERNEL_EXTRA_FEATURES}"
KERNEL_FEATURES_append_gemuall = " cfg/virtio.scc"
KERNEL_FEATURES_append_gemux86 = " cfg/sound.scc cfg/paravirt_kv
KERNEL_FEATURES_append_gemux86-64 = " cfg/sound.scc"

| >

KERNEL_FIT_LINK_NAMESY
The link name of the kernel flattened image tree (FIT) image. This
variable is set in themeta/classes/kernel-artifact-
names.bbclass file as follows:

KERNEL_FIT_LINK_NAME 2= "${KERNEL_ARTIFACT_LINK_NAME}"

The value of the KERNEL ARTIFACT LINK NAME variable,
which is set in the same file, has the following value:

KERNEL_ARTIFACT_LINK_NAME ?= "${MACHINE}"

See the MACHINE variable for additional information.

KERNEL_FIT_NAMEY
The base name of the kernel flattened image tree (FIT) image. This
variable is set in themeta/classes/kernel-artifact-
names.bbclass file as follows:

KERNEL_FIT_NAME ?= "${KERNEL_ARTIFACT_NAME}"

The value of the KERNETL, ARTTFACT NAME variable, which is set
in the same file, has the following value:

KERNEL_ARTIFACT_NAME ?= "${PKGE}-${PKGV}-${PKGR}-${MACHINE}${IMA
< »

KERNEL_IMAGE_LINK_NAMES|
The link name for the kernel image. This variable is set in the
meta/classes/kernel-artifact-
names.bbclass file as follows:

KERNEL_TMAGE_LINK_NAME 2= "${KERNEL_ARTIFACT_LINK_NAME}"

The value of the KERNEL_ARTIFACT_LINK_NAME variable,
which is set in the same file, has the following value:

KERNEL_ARTIFACT_LINK_NAME ?= "${MACHINE}"

See the MACHINE variable for additional information.

KERNEL_IMAGE_MAXSIZES|
Specifies the maximum size of the kernel image file in kilobytes. If
KERNEL TMAGE MAXSTIZE is set, the size of the kernel image file
is checked against the set value during the do sizecheck task.
The task fails if the kernel image file is larger than the setting.

KERNEL TMAGE MAXSTZE is useful for target devices that have
a limited amount of space in which the kernel image must be stored.

By default, this variable is not set, which means the size of the kernel
image is not checked.

KERNEL_IMAGE_NAME(|

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 170/235

3/4/2020 Yocto Project Reference Manual

The base name of the kernel image. This variable is set in the
meta/classes/kernel-artifact-
names.bbclass file as follows:

KERNEL_IMAGE_NAME ?= "${KERNEL_ARTIFACT_NAME}"

The value of the KERNEL_ARTIFACT_NAME variable, which is set
in the same file, has the following value:

KERNEL_ARTIFACT_NAME 2= "${PKGE}-${PKGV}-${PKGR}-${MACHINE}${IMA
< »

KERNEL_IMAGETYPE(
The type of kernel to build for a device, usually set by the machine
configuration files and defaults to "zImage". This variable is used when
building the kernel and is passed to ma ke as the target to build.

If you want to build an alternate kernel image type, use the
KERNEL ALT TIMAGETYPE variable.

KERNEL_MODULE_AUTOLOADS
Lists kernel modules that need to be auto-loaded during boot.

Note

This variable replaces the deprecated
module autoload variable.

You can use the KERNEL MODULE AUTOLOAD variable anywhere
that it can be recognized by_the kernel lzcipe or by an out-of-tree kernel
module recipe (e.g. a machine configuration file, a distribution
configuration file, an append file for the recipe, or the recipe itself).

Specify it as follows:

KERNEL_MODULE_AUTOLOAD += "module_namel module_name2 module_name
| >

Including KERNEL MODULE AUTOLOAD causes the
OpenEmbedded build system to populate the /etc/modules—
load.d/modname . conf file with the list of modules to be auto-
loaded on boot. The modules appear one-per-line in the file. Here is an
example of the most common use case:

KERNEL_MODULE_AUTOLOAD += "module_name"

For information on how to populate the modname . conf file with
modprobe. d syntax lines, see the
KERNEL MODULE PROBECONF variable.

KERNEL_MODULE_PROBECONFY|
Provides a list of modules for which the OpenEmbedded build system
expects to find module conf modname values that specify
configuration for each of the modules. For information on how to provide
those module configurations, see the module conf * variable.

KERNEL_PATHY|
The location of the kernel sources. This variable is set to the value of the
STAGING KERNEL DIR within the module class. For
information on how this variable is used, see the "Incorporating_Out-of-
Tree Modules" section in the Yocto Project Linux Kernel Development
Manual.

To help maximize compatibility with out-of-tree drivers used to build
modules, the OpenEmbedded build system also recognizes and uses the
KERNEIL SRC variable, which is identical to the KERNEL PATH
variable. Both variables are common variables used by external Makefiles
to point to the kernel source directory.

KERNEL_SRC|
The location of the kernel sources. This variable is set to the value of the
STAGING KERNEL DIR within the module class. For
information on how this variable is used, see the "Incorporating_Out-of-
Tree Modules" section in the Yocto Project Linux Kernel Development
Manual.

To help maximize compatibility with out-of-tree drivers used to build
modules, the OpenEmbedded build system also recognizes and uses the

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 171/235

http://www.yoctoproject.org/docs/3.1/kernel-dev/kernel-dev.html#incorporating-out-of-tree-modules
http://www.yoctoproject.org/docs/3.1/kernel-dev/kernel-dev.html#incorporating-out-of-tree-modules

3/4/2020 Yocto Project Reference Manual

KERNEL PATH variable, which is identical to the KERNEL SRC
variable. Both variables are common variables used by external Makefiles
to point to the kernel source directory.

KERNEL_VERSIONY|
Specifies the version of the kernel as extracted from version.h or
utsrelease.h within the kernel sources. Effects of setting this
variable do not take affect until the kernel has been configured.
Consequently, attempting to refer to this variable in contexts prior to
configuration will not work.

KERNELDEPMODDEPENDS|
Specifies whether the data referenced through PKGDATA DIRis
needed or not. The KERNELDEPMODDEPEND does not control
whether or not that data exists, but simply whether or not it is used. If
you do not need to use the data, set the KERNELDEPMODDEPEND
variable in your 1nitramfs recipe. Setting the variable there when
the data is not needed avoids a potential dependency loop.

KFEATURE_DESCRIPTIONY|
Provides a short description of a configuration fragment. You use this
variable in the . SCC file that describes a configuration fragment file.
Here is the variable used in a file named sSmp . SCC to describe SMP
being enabled:

define KFEATURE_DESCRIPTION "Enable SMP"

KMACHINES
The machine as known by the kernel. Sometimes the machine name used
by the kernel does not match the machine name used by the
OpenEmbedded build system. For example, the machine name that the
OpenEmbedded build system understands as core2-32-intel-
common goes by a different name in the Linux Yocto kernel. The kernel
understands that machine as intel—-core2-32. For cases like
these, the KMACHINE variable maps the kernel machine name to the
OpenEmbedded build system machine name.

These mappings between different names occur in the Yocto Linux
Kernel's meta branch. As an example take a look in the
common/recipes-kernel/linux/linux-
yocto 3.19.bbappend file:

LINUX_VERSION_core2-32-intel-common = "3.19.0"
COMPATIBLE_MACHINE_core2-32-intel-common = "${MACHINE}"
SRCREV_meta_core2-32-intel-common = "8897ef68b30e7426bc1d39895e7
SRCREV_machine_core2-32-intel-common = "43b9eced9ba8a57add36af0o7
KMACHINE_core2-32-intel-common = "intel-core2-32"
KBRANCH_core2-32-intel-common = "standard/base"
KERNEL_FEATURES_append_core2-32-intel-common = "${KERNEL_FEATURE

| >

The KMACHINE statement says that the kernel understands the
machine name as "intel-core2-32". However, the OpenEmbedded build
system understands the machine as "core2-32-intel-common".

KTYPE(
Defines the kernel type to be used in assembling the configuration. The
linux-yocto recipes define "standard", "tiny", and "preempt-rt" kernel
types. See the "Kernel Types" section in the Yocto Project Linux Kernel
Development Manual for more information on kernel types.

You define the KTYPE variable in the BSP Descriptions. The value you
use must match the value used for the LINUX KERNEL TYPK
value used by the kernel recipe.

LABELS|
Provides a list of targets for automatic configuration.

See the grub—efi class for more information on how this variable is
used.

LAYERDEPENDSY|
Lists the layers, separated by spaces, on which this recipe depends.
Optionally, you can specify a specific layer version for a dependency by
adding it to the end of the layer name. Here is an example:

LAYERDEPENDS_mylayer = "anotherlayer (=3)"

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 172/235

http://www.yoctoproject.org/docs/3.1/kernel-dev/kernel-dev.html#kernel-types
http://www.yoctoproject.org/docs/3.1/kernel-dev/kernel-dev.html#bsp-descriptions

3/4/2020 Yocto Project Reference Manual

In this previous example, version 3 of "anotherlayer" is compared against
LAYERVERSION anotherlayer.

An error is produced if any dependency is missing or the version numbers
(if specified) do not match exactly. This variable is used in the
conf/layer.conf file and must be suffixed with the name of the
specific layer (e.g. LAYERDEPENDS mylayer).

LAYERDIRY|
When used inside the 1ayer .conf configuration file, this variable
provides the path of the current layer. This variable is not available outside
of layer .conf and references are expanded immediately when
parsing of the file completes.
LAYERRECOMMENDS|

Lists the layers, separated by spaces, recommended for use with this
layer.

Optionally, you can specify a specific layer version for a recommendation
by adding the version to the end of the layer name. Here is an example:

LAYERRECOMMENDS _mylayer = "anotherlayer (=3)"

In this previous example, version 3 of "anotherlayer" is compared against
LAYERVERSION anotherlayer.

This variable is used in the conf/layer.conf file and must be
suffixed with the name of the specific layer (e.g.
LAYERRECOMMENDS mylayer).

LAYERSERIES_COMPATY|
Lists the versions of the OpenEmbedded-Core for which a layer is
compatible. Using the LAYERSERIES COMPAT variable allows the
layer maintainer to indicate which combinations of the layer and OE-Core
can be expected to work. The variable gives the system a way to detect
when a layer has not been tested with new releases of OE-Core (e.g. the
layer is not maintained).

To specify the OE-Core versions for which a layer is compatible, use this
variable in your layer's conf/layer.conf configuration file. For
the list, use the Yocto Project Release Name (e.g. dunfell). To specify
multiple OE-Core versions for the layer, use a space-separated list:

LAYERSERIES_COMPAT_Llayer_root_name = "dunfell zeus"

Note

Setting LAYERSERTIES COMPAT is

required by the Yocto Project Compatible version
2 standard. The OpenEmbedded build system
produces a warning if the variable is not set for
any given layer.

See the "Creating_Your Own Layer" section in the Yocto Project
Development Tasks Manual.

LAYERVERSIONY|
Optionally specifies the version of a layer as a single number. You can use
this within LAYERDFEPENDS for another layer in order to depend on a
specific version of the layer. This variable is used in the
conf/layer.conf file and must be suffixed with the name of the
specific layer (e.g. LAYERVERSION mylayer).
LDY|
The minimal command and arguments used to run the linker.
LDFLAGS(

Specifies the flags to pass to the linker. This variable is exported to an
environment variable and thus made visible to the software being built
during the compilation step.

Default initialization for LDEF'LAGS varies depending on what is being
built:

o TARGET LDFTLAGS when building for the target

o BUILD LDFLAGS when building for the build host (i.e. —
native)

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 173/235

https://wiki.yoctoproject.org/wiki/Releases
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#creating-your-own-layer

3/4/2020

LEAD_SONAMEY

LIC_FILES_CHKSUM(|

LICENSEY

LICENSE_CREATE_PACKAGE(

LICENSE_FLAGSS

Yocto Project Reference Manual

o BUILDSDK LDFLAGS when building for an SDK (i.e.
nativesdk-)

Specifies the lead (or primary) compiled library file (i.e. . SO) that the
debian class applies its naming policy to given a recipe that packages
multiple libraries.

This variable works in conjunction with the debian class.

Checksums of the license text in the recipe source code.

This variable tracks changes in license text of the source code files. If the
license text is changed, it will trigger a build failure, which gives the
developer an opportunity to review any license change.

This variable must be defined for all recipes (unless LICENSE is set to
"CLOSED").

For more information, see the "Tracking_License Changes" section in the
Yocto Project Development Tasks Manual.

The list of source licenses for the recipe. Follow these rules:
e Do not use spaces within individual license names.

e Separate license names using | (pipe) when there is a choice between
licenses.

e Separate license names using & (ampersand) when multiple licenses
exist that cover different parts of the source.

e You can use spaces between license names.

e For standard licenses, use the names of the files in
meta/files/common-licenses/ orthe
SPDXLICENSEMAP flag names defined in
meta/conf/licenses.conft.

Here are some examples:

LICENSE = "LGPLv2.1 | GPLv3"
LICENSE = "MPL-1 & LGPLv2.1"
LICENSE = "GPLv2+"

The first example is from the recipes for Qt, which the user may choose to

distribute under either the LGPL version 2.1 or GPL version 3. The second
example is from Cairo where two licenses cover different parts of the
source code. The final example is from Sysstat, which presents a
single license.

You can also specify licenses on a per-package basis to handle situations
where components of the output have different licenses. For example, a
piece of software whose code is licensed under GPLv2 but has
accompanying documentation licensed under the GNU Free
Documentation License 1.2 could be specified as follows:

LICENSE = "GFDL-1.2 & GPLv2"
LICENSE_${PN} = "GPLv2"
LICENSE_${PN}-doc = "GFDL-1.2"

Setting LICENSE CREATE PACKAGE to "1" causes the
OpenEmbedded build system to create an extra package (i.e. $ { PN} —
1ic) for each recipe and to add those packages to the
RRECOMMENDS_$ {PN}.

The S { PN} —11c package installs a directory in
/usr/share/licenses named S { PN}, which is the recipe's
base name, and installs files in that directory that contain license and
copyright information (i.e. copies of the appropriate license files from
meta/common-licenses that match the licenses specified in
the LICENSE variable of the recipe metadata and copies of files
marked in LIC _FTLES CHKSUM as containing license text).

For related information on providing license text, see the

COPY LIC DIRS variable, the COPY T,TC MANIFEST
variable:and the "Providing_License Text" section in the Yocto Project
Development Tasks Manual.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

174/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#usingpoky-configuring-LIC_FILES_CHKSUM
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#providing-license-text

3/4/2020 Yocto Project Reference Manual

Specifies additional flags for a recipe you must whitelist through
LICENSE FLAGS WHITELTST in order to allow the recipe to be
built. When providing multiple flags, separate them with spaces.

This value is independent of LICENSE and is typically used to mark
recipes that might require additional licenses in order to be used in a
commercial product. For more information, see the "Enabling
Commercially Licensed Recipes" section in the Yocto Project Development
Tasks Manual.

LICENSE_FLAGS_WHITELISTY
Lists license flags that when specified in LICENSE FTLAGS within a
recipe should not prevent that recipe from being built. This practice is
otherwise known as "whitelisting" license flags. For more information, see
the "Enabling_Commercially Licensed Recipes" section in the Yocto Project
Development Tasks Manual.

LICENSE_PATHY|
Path to additional licenses used during the build. By default, the

OpenEmbedded build system uses COMMON LICENSE DIRto
define the directory that holds common license text used during the build.
The LICENSE PATH variable allows you to extend that location to
other areas that have additional licenses:

LICENSE_PATH += "path-to-additional-common-Llicenses"

LINUX_KERNEL_TYPEY
Defines the kernel type to be used in assembling the configuration. The

linux-yocto recipes define "standard", "tiny", and "preempt-rt" kernel
types. See the "Kernel Types" section in the Yocto Project Linux Kernel
Development Manual for more information on kernel types.

If you do not specify a LINUX KERNEL TYPE, it defaults to
"standard". Together with KMAC_HINE, the

LINUX KERNEL TYPE variable defines the search arguments used
by the kernel tools to find the appropriate description within the kernel
Metadata with which to build out the sources and configuration.

LINUX_VERSIONY|
The Linux version from kernel . org on which the Linux kernel image

being built using the OpenEmbedded build system is based. You define
this variable in the kernel recipe. For example, the linux—yocto—
3.4 .bb kernel recipe found inmeta/recipes-
kernel/linux defines the variables as follows:

LINUX_VERSION ?= "3.4.24"

The LINUX VERSTON variable is used to define PV for the recipe:

PV = "${LINUX_VERSION}+git${SRCPV}"

LINUX_VERSION_EXTENSIONY
A string extension compiled into the version string of the Linux kernel built
with the OpenEmbedded build system. You define this variable in the
kernel recipe. For example, the linux-yocto kernel recipes all define the
variable as follows:

LINUX_VERSION_EXTENSION ?= "-yocto-${LINUX KERNEL TYPE}"

Defining this variable essentially sets the Linux kernel configuration item
CONFIG LOCALVERSION, which is visible through the uname
command._Here is an example that shows the extension assuming it was
set as previously shown:

$ uname -r
3.7.0-rc8-custom

LOG_DIRY
Specifies the directory to which the OpenEmbedded build system writes
overall log files. The default directory is $ { TMPDIR} /1log.
For the directory containing logs specific to each task, see the T variable.
M
MACHINE|

Specifies the target device for which the image is built. You define
MACHINE inthe local.conf file found in the Build Directory. By
default, MACHINE is set to "gemux86", which is an x86-based
architecture machine to be emulated using QEMU:

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 175/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#enabling-commercially-licensed-recipes
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#enabling-commercially-licensed-recipes
http://www.yoctoproject.org/docs/3.1/kernel-dev/kernel-dev.html#kernel-types

3/4/2020

MACHINE_ARCHY|

MACHINE_ESSENTIAL_EXTRA_RDEPENDSY|

MACHINE_ESSENTIAL_EXTRA_RRECOMMENDSY|

Yocto Project Reference Manual
MACHINE ?= "gemux86"

The variable corresponds to a machine configuration file of the same
name, through which machine-specific configurations are set. Thus, when
MACHINE is set to "gemux86" there exists the corresponding
gemux86 .conf machine configuration file, which can be found in
the Source Directory in meta/conf/machine.

The list of machines supported by the Yocto Project as shipped include the
following:

MACHINE ?= "gemuarm"
MACHINE ?= "gemuarmé64"

MACHINE ?= "gemumips"
MACHINE ?= "gemumips64"
MACHINE ?= "gemuppc"
MACHINE ?= "gemux86"
MACHINE ?= "gemux86-64"

MACHINE ?= "genericx86"
MACHINE ?= "genericx86-64"
MACHINE ?= "beaglebone"
MACHINE ?= "mpc8315e-rdb"
MACHINE ?= "edgerouter"

The last five are Yocto Project reference hardware boards, which are
provided in the meta-yocto-bsp layer.

Note

Adding additional Board Support Package (BSP)
layers to your configuration adds new possible
settings for MACHINE.

Specifies the name of the machine-specific architecture. This variable is
set automatically from MACHTINE or TUNE _PKGARCH. You should
not hand-edit the MACHINE ARCH variable.

A list of required machine-specific packages to install as part of the image
being built. The build process depends on these packages being present.
Furthermore, because this is a "machine-essential" variable, the list of
packages are essential for the machine to boot. The impact of this variable
affects images based on packagegroup—-core-boot, including
the core-image-minimal image.

This variable is similar to the

MACHINE ESSENTTIAT EXTRA RRECOMMENDS variable
with the exc&mion that the ima_ge being built has a build dependency on
the variable's list of packages. In other words, the image will not build if a
file in this list is not found.

As an example, suppose the machine for which you are building requires
example-init to be run during boot to initialize the hardware. In
this case, you would use the following in the machine's . conf
configuration file:

MACHINE_ESSENTIAL_EXTRA_RDEPENDS += "example-init"

A list of recommended machine-specific packages to install as part of the
image being built. The build process does not depend on these packages
being present. However, because this is a "machine-essential" variable,
the list of packages are essential for the machine to boot. The impact of
this variable affects images based on packagegroup-core-
boot, including the core—-image-minimal image.

This variable is similar to the

MACHINE ESSENTTIATL EXTRA RDEPENDS variable with the
exception that the image being_built does not have a build dependency on
the variable's list of packages. In other words, the image will still build if a
package in this list is not found. Typically, this variable is used to handle
essential kernel modules, whose functionality may be selected to be built
into the kernel rather than as a module, in which case a package will not
be produced.

Consider an example where you have a custom kernel where a specific
touchscreen driver is required for the machine to be usable. However, the
driver can be built as a module or into the kernel depending on the kernel

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 176/235

3/4/2020

MACHINE_EXTRA_RDEPENDSY|

MACHINE_EXTRA_RRECOMMENDSY|

MACHINE_FEATURESY|

Yocto Project Reference Manual

configuration. If the driver is built as a module, you want it to be installed.

But, when the driver is built into the kernel, you still want the build to
succeed. This variable sets up a "recommends" relationship so that in the
latter case, the build will not fail due to the missing package. To
accomplish this, assuming the package for the module was called
kernel-module—-abl23, you would use the following in the
machine's . conf configuration file:

MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS += "kernel-module-ab123"

Note

In this example, the kernel-module-
ab 123 recipe needs to explicitly set its
PACKAGES variable to ensure that BitBake
does not use the kernel recipe's

PACKAGES DYNAMIC variable to satisfy
the dependency.

Some examples of these machine essentials are flash, screen, keyboard,
mouse, or touchscreen drivers (depending on the machine).

A list of machine-specific packages to install as part of the image being
built that are not essential for the machine to boot. However, the build
process for more fully-featured images depends on the packages being
present.

This variable affects all images based on packagegroup-base,
which does not include the core—image-minimal or core-
image-full-cmdline images.

The variable is similar to the MACHINE EXTRA RRECOMMENDS
variable with the exception that the image_being built has a build
dependency on the variable's list of packages. In other words, the image
will not build if a file in this list is not found.

An example is a machine that has WiFi capability but is not essential for
the machine to boot the image. However, if you are building a more fully-
featured image, you want to enable the WiFi. The package containing the
firmware for the WiFi hardware is always expected to exist, so it is
acceptable for the build process to depend upon finding the package. In
this case, assuming the package for the firmware was called
wifidriver-firmware, you would use the following in the

. conf file for the machine:

MACHINE_EXTRA_RDEPENDS += "wifidriver-firmware"

A list of machine-specific packages to install as part of the image being
built that are not essential for booting the machine. The image being built
has no build dependency on this list of packages.

This variable affects only images based on packagegroup-base,
which does not include the core—image-minimal or core-
image-full-cmdline images.

This variable is similar to the MACHINE EXTRA RDEPENDS
variable with the exception that the image_being built does not have a
build dependency on the variable's list of packages. In other words, the
image will build if a file in this list is not found.

An example is a machine that has WiFi capability but is not essential For
the machine to boot the image. However, if you are building a more fully-
featured image, you want to enable WiFi. In this case, the package
containing the WiFi kernel module will not be produced if the WiFi driver is
built into the kernel, in which case you still want the build to succeed
instead of failing as a result of the package not being found. To
accomplish this, assuming the package for the module was called
kernel-module-examplewifi, you would use the following
in the . conf file for the machine:

MACHINE_EXTRA_RRECOMMENDS += "kernel-module-examplewifi"

Specifies the list of hardware features the MACHINE is capable of
supporting. For related information on enabling features, see the

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

1771235

3/4/2020

MACHINE_FEATURES_BACKFILL

MACHINE_FEATURES_BACKFILL_CONSIDERED|

MACHINEOVERRIDESS

MAINTAINERS

MIRRORSY|

MLPREFIXY

Yocto Project Reference Manual

DISTRO FEATURES, COMBINED FEATURES, and
IMAGE FEATURES variables.

For a list of hardware features supported by the Yocto Project as shipped,
see the "Machine Features" section.

Features to be added to MACHINE FEATURES if not also present in
MACHINE FEATURES BACKFILL CONSIDERED.

This variable is set in the meta/conf/bitbake.conf file. Itis
not intended to be user-configurable. It is best to just reference the

variable to see which machine features are being backfilled for all machine
configurations. See the "Feature Backfilling" section for more information.

Features from MACHINE FEATURES BACKFTLL that should
not be backfilled (i.e. added to MACHINE FEATURES) during the
build. See the "Feature Backfilling" section for more information.

A colon-separated list of overrides that apply to the current machine. By
default, this list includes the value of MACHINE.

You can extend MACHINEOVERRIDES to add extra overrides that
should apply to a machine. For example, all machines emulated in QEMU
(e.g. gemuarm, gemux86, and so forth) include a file named
meta/conf/machine/include/gemu. inc that
prepends the following override to MACHINEOVERRIDES:

MACHINEOVERRIDES =. "gemuall:"

This override allows variables to be overriden for all machines emulated in
QEMU, like in the following example from the connman-conf
recipe:

SRC_URI_append_gemuall = "file://wired.config \
file://wired-setup \

The underlying mechanism behind MACHINEOVERRIDES is simply
that it is included in the default value of OVERRTDES.

The email address of the distribution maintainer.

Specifies additional paths from which the OpenEmbedded build system
gets source code. When the build system searches for source code, it first
tries the local download directory. If that location fails, the build system
tries locations defined by PREMTIRRORS, the upstream source, and
then locations specified by MIRRORS in that order.

Assuming your distribution (DI STRO) is "poky", the default value for
MIRRORS is defined in the conf/distro/poky.conf filein
the meta-poky Git repository.

Specifies a prefix has been added to PN to create a special version of a
recipe or package (i.e. a Multilib version). The variable is used in places
where the prefix needs to be added to or removed from a the name (e.g.
the BPN variable). MLPREF I X gets set when a prefix has been added
to PN.

Note

The "ML" in MLPREF I X stands for "MultiLib".
This representation is historical and comes from
a time when nativesdk was a suffix rather
than a prefix on the recipe name. When
nativesdk was turned into a prefix, it
made sense to set MLPREF TX for it as well.

To help understand when MLPREF I X might be needed, consider when
BBCLASSEXTEND is used to provide a nativesdk version of a
recipe in addition to the target version. If that recipe declares build-time
dependencies on tasks in other recipes by using DEPENDS, then a

dependency on "foo" will automatically get rewritten to a dependency on

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

178/235

3/4/2020

module_autoloadq

module_conf

MODULE_TARBALL_DEPLOYY|

MODULE_TARBALL_LINK_NAME(|

MODULE_TARBALL_NAME(|

Yocto Project Reference Manual

"nativesdk-foo". However, dependencies like the following will not get
rewritten automatically:

do_foo[depends] += "recipe:do_foo"

If you want such a dependency to also get transformed, you can do the
following:

do_foo[depends] += "${MLPREFIX}recipe:do_foo"

This variable has been replaced by the

KERNEL MODULE AUTOLOAD variable. You should replace all
occurrences of module autoload with additions to
KERNELiMODULEiﬁJTOLOAD, for example:

module_autoload_rfcomm = "rfcomm"

should now be replaced with:

KERNEL_MODULE_AUTOLOAD += "rfcomm"

See the KERNETL MODULE AUTOLOAD variable for more
information.

Specifies modprobe . d syntax lines for inclusion in the
/etc/modprobe.d/modname. conf file.

You can use this variable anywhere that it can be recognized by the kernel
recipe or out-of-tree kernel module recipe (e.g. a machine configuration
file, a distribution configuration file, an append file for the recipe, or the
recipe itself). If you use this variable, you must also be sure to list the
module name in the KERNET, MODULE _AUTOLOAD variable.

Here is the general syntax:

module_conf_module_name = "modprobe.d-syntax"

You must use the kernel module name override.

Run man modprobe . d in the shell to find out more information on
the exact syntax you want to provide with module conf.

Including module conf causes the OpenEmbedded build system to
populate the /et c/modprobe.d/modname . conf file with
modprobe . d syntax lines. Here is an example that adds the options
argl and arg?2 to a module named mymodule:

module_conf_mymodule = "options mymodule argl=vall arg2=val2"

For information on how to specify kernel modules to auto-load on boot,
see the KERNETL, MODULE_AUTOLOAD variable.

Controls creation of the modules—* . tgz file. Set this variable to
"0" to disable creation of this file, which contains all of the kernel modules
resulting from a kernel build.

The link name of the kernel module tarball. This variable is set in the
meta/classes/kernel-artifact-
names .bbclass file as follows:

MODULE_TARBALL_LINK_NAME ?= "${KERNEL_ARTIFACT_LINK_NAME}"

The value of the KERNEL_ARTIFACT_LINK_NAME variable,
which is set in the same file, has the following value:

KERNEL_ARTIFACT LINK_NAME ?= "${MACHINE}"
See the MACHINE variable for additional information.

The base name of the kernel module tarball. This variable is set in the
meta/classes/kernel-artifact-
names.bbclass file as follows:

MODULE_TARBALL_NAME ?= "${KERNEL_ARTIFACT NAME}"

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

179/235

http://linux.die.net/man/5/modprobe.d

3/4/2020

MULTIMACH_TARGET_SYS{|

NATIVELSBSTRINGS

NMS|

NO_GENERIC_LICENSES|

NO_RECOMMENDATIONSS|

Yocto Project Reference Manual

The value of the KERNEL ARTTIFACT NAME variable, which is set
in the same file, has the following value:

KERNEL_ARTIFACT_NAME ?= "${PKGE}-${PKGV}-${PKGR}-${MACHINE}${IMA

| »

Uniquely identifies the type of the target system for which packages are
being built. This variable allows output for different types of target
systems to be put into different subdirectories of the same output
directory.

The default value of this variable is:
${PACKAGE_ARCH}${TARGET_VENDOR}-${TARGET_0S}
Some classes (e.g. cross—canadian) modify the

MULTIMACH TARGET SYS value.

See the STAMP variable for an example. See the
STAGING DIR TARGET variable for more information.

A string identifying the host distribution. Strings consist of the host
distributor ID followed by the release, as reported by the

1sb release tool or as read from /etc/lsb-release. For
examae, when running a build on Ubuntu 12.10, the value is "Ubuntu-
12.10". If this information is unable to be determined, the value resolves
to "Unknown".

This variable is used by default to isolate native shared state packages for
different distributions (e.g. to avoid problems with gl ilbc version
incompatibilities). Additionally, the variable is checked against

SANITY TESTED DISTROS if that variable is set.

The minimal command and arguments to run nm.

Avoids QA errors when you use a non-common, non-CLOSED license in a
recipe. Packages exist, such as the linux-firmware package, with many
licenses that are not in any way common. Also, new licenses are added
occasionally to avoid introducing a lot of common license files, which are
only applicable to a specific package. NO GENERIC LICENSE is
used to allow copying a license that does not exist in common licenses.

The following example shows how to add NO GENERIC LICENSE
to a recipe:

NO_GENERIC_LICENSE[license_name] = "license_file_1in_fetched_sour
| >

The following is an example that uses the LICENSE .Abilis.txt
file as the license from the fetched source:

NO_GENERIC_LICENSE[Firmware-Abilis] = "LICENSE.Abilis.txt"

Prevents installation of all "recommended-only" packages. Recommended-
only packages are packages installed only through the RRECOMMENDS
variable). Setting the NO_RECOMMENDATIONS variable to "1"
turns this feature on:

NO_RECOMMENDATIONS = "1"

You can set this variable globally in your 1ocal .conf file or you can
attach it to a specific image recipe by using the recipe name override:

NO_RECOMMENDATIONS_pn-target_image = "1"

It is important to realize that if you choose to not install packages using
this variable and some other packages are dependent on them (i.e. listed
in a recipe's RDEPENDS variable), the OpenEmbedded build system
ignores your request and will install the packages to avoid dependency
errors.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

180/235

3/4/2020

NOAUTOPACKAGEDEBUGY|

OBICOPY(|

OBJDUMP|

OE_BINCONFIG_EXTRA_MANGLES|

OE_IMPORTSY|

OE_INIT_ENV_SCRIPTY|

OE_TERMINALY|

Yocto Project Reference Manual

Note

Some recommended packages might be required
for certain system functionality, such as kernel
modules. It is up to you to add packages with
the IMAGE TINSTATLL variable.

Support for this variable exists only when using the IPK and RPM
packaging backend. Support does not exist for DEB.

See the BAD RECOMMENDATTIONS and the
PACKAGE EXCLUDE variables for related information.

Disables auto package from splitting . debug files. If a recipe requires
FILES ${PN}-dbg to be set manually, the
NOAUTOPACKAGEDEBUG can be defined allowing you to define the
content of the debug package. For example:

NOAUTOPACKAGEDEBUG = "1"

FILES_${PN}-dev = "${includedir}/${QT_DIR_NAME}/Qt/*"
FILES_${PN}-dbg = "/usr/src/debug/"
FILES_${QT_BASE_NAME}-demos-doc = "${docdir}/${QT_DIR_NAME}/qch/

< »

The minimal command and arguments to run Obj COpPY.
The minimal command and arguments to run objdump.

When inheriting the binconfig class, this variable specifies
additional arguments passed to the "sed" command. The sed command
alters any paths in configuration scripts that have been set up during
compilation. Inheriting this class results in all paths in these scripts being
changed to point into the Sysroots/ directory so that all builds that
use the script will use the correct directories for the cross compiling
layout.

Seethemeta/classes/binconfig.bbclass inthe
Source Directory for details on how this class applies these additional sed
command arguments. For general information on the binconfig
class, see the "binconfig.bbclass" section.

An internal variable used to tell the OpenEmbedded build system what
Python modules to import for every Python function run by the system.

Note

Do not set this variable. It is for internal use
only.

The name of the build environment setup script for the purposes of setting
up the environment within the extensible SDK. The default value is "oe-
init-build-env".

If you use a custom script to set up your build environment, set the
OE INIT ENV_ SCRIPT variable to its name.

Controls how the OpenEmbedded build system spawns interactive
terminals on the host development system (e.g. using the BitBake
command with the —c devshell command-line option). For more
information, see the "Using_a Development Shell" section in the Yocto
Project Development Tasks Manual.

You can use the following values for the OE TERMINAL variable:

auto
gnome
xfce
rxvt
screen
konsole

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 181/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#platdev-appdev-devshell

3/4/2020 Yocto Project Reference Manual

none

OEROOTY
The directory from which the top-level build environment setup script is

sourced. The Yocto Project provides a top-level build environment setup
script: oe—init-build-env. When you run this script, the
OEROQT variable resolves to the directory that contains the script.

For additional information on how this variable is used, see the
initialization script.

OLDEST_KERNELS|
Declares the oldest version of the Linux kernel that the produced binaries
must support. This variable is passed into the build of the Embedded GNU
C Library (g1libc).

The default for this variable comes from the
meta/conf/bitbake.conf configuration file. You can override
this default by setting the variable in a custom distribution configuration
file.

OVERRIDESY|
A colon-separated list of overrides that currently apply. Overrides are a
BitBake mechanism that allows variables to be selectively overridden at
the end of parsing. The set of overrides in OVERRIDES represents the
"state" during building, which includes the current recipe being built, the
machine for which it is being built, and so forth.

As an example, if the string "an-override" appears as an element in the
colon-separated list in OVERRIDES, then the following assignment will
override F'OO with the value "overridden" at the end of parsing:

FOO_an-override = "overridden"

See the "Conditional Syntax (Overrides)" section in the BitBake User
Manual for more information on the overrides mechanism.

The default value of OVERRIDES includes the values of the
CLASSOVERRIDE, MACHINEOVERRIDES, and
DISTROOVERRIDES variables. Another important override included
by default is pn—3 { PN }. This override allows variables to be set for a
single recipe within configuration (. conf) files. Here is an example:

FOO_pn-myrecipe = "myrecipe-specific value"

Tip

An easy way to see what overrides apply is to
search for OVERRIDES in the output of the
bitbake -e command. See the "Viewing

Variable Values" section in the Yocto Project
Development Tasks Manual for more
information.

PIl
The recipe name and version. P is comprised of the following:

${PN}-${PV}
PACKAGE_ARCHY|
The architecture of the resulting package or packages.

By default, the value of this variable is set to TUNE _PKGARCH when
building for the target, BUTLD ARCH when building for the build host,
and "${SDK_ARCH}-${SDKPKGSUFFIX}" when building for the SDK.

Note

See SDK_ARCH for more information.

However, if your recipe's output packages are built specific to the target
machine rather than generally for the architecture of the machine, you

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 182/235

http://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html#conditional-syntax-overrides
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#dev-debugging-viewing-variable-values

3/4/2020 Yocto Project Reference Manual

should set PACKAGE ARCH to the value of MACHINE ARCH in
the recipe as follows:

PACKAGE_ARCH = "${MACHINE_ARCH}"

PACKAGE_ARCHSY|
Specifies a list of architectures compatible with the target machine. This
variable is set automatically and should not normally be hand-edited.
Entries are separated using spaces and listed in order of priority. The
default value for PACKAGE _ARCHS is "all any noarch
${PACKAGE_EXTRA_ARCHS} ${MACHINE_ARCH}".

PACKAGE_BEFORE_PNY|
Enables easily adding packages to PACKAGES before S { PN} so that
those added packages can pick up files that would normally be included in
the default package.

PACKAGE_CLASSES]|
This variable, which is set in the Llocal .conf configuration file found
in the con f folder of the Build Directory, specifies the package manager
the OpenEmbedded build system uses when packaging data.

You can provide one or more of the following arguments for the variable:
PACKAGE_CLASSES ?= "package_rpm package_deb package_ipk package_

| >

Warning

While it is a legal option, the package tar
class has limited functionality due to no support
for package dependencies by that backend.
Therefore, it is recommended that you do not
use it.

The build system uses only the first argument in the list as the package
manager when creating your image or SDK. However, packages will be
created using any additional packaging classes you specify. For example, if
you use the following in your Local .conf file:

PACKAGE_CLASSES ?= "package_ipk"

The OpenEmbedded build system uses the IPK package manager to create
your image or SDK.

For information on packaging and build performance effects as a result of
the package manager in use, see the "package .bbclass" section.

PACKAGE_DEBUG_SPLIT_STYLE
Determines how to split up the binary and debug information when
creating * —dlbg packages to be used with the GNU Project Debugger
(GDB).

with the PACKAGE DEBUG_SPLIT STYLE variable, you can
control where debug information, which can include or exclude source
files, is stored:

o ".debug": Debug symbol files are placed next to the binary in a
. debug directory on the target. For example, if a binary is installed
into /bin, the corresponding debug symbol files are installed in
/bin/ .debug. Source files are placed in
/usr/src/debug.

e "debug-file-directory": Debug symbol files are placed under
/usr/1lib/debug on the target, and separated by the path
from where the binary is installed. For example, if a binary is installed
in /bin, the corresponding debug symbols are installed in
/usr/1lib/debug/bin. Source files are placed in
/usr/src/debug.

e "debug-without-src": The same behavior as ".debug" previously
described with the exception that no source files are installed.

e "debug-with-srcpkg": The same behavior as ".debug" previously
described with the exception that all source files are placed in a
separate * —srC pkg. This is the default behavior.

You can find out more about debugging using GDB by reading the
"Debugging_With the GNU Project Debugger (GDB)_Remotely" section in

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 183/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#platdev-gdb-remotedebug

3/4/2020

PACKAGE_EXCLUDE_COMPLEMENTARY|

PACKAGE_EXCLUDE(|

PACKAGE_EXTRA_ARCHS |

PACKAGE_FEED_ARCHSY|

Yocto Project Reference Manual

the Yocto Project Development Tasks Manual.

Prevents specific packages from being installed when you are installing
complementary packages.

You might find that you want to prevent installing certain packages when
you are installing complementary packages. For example, if you are using
IMAGE FEATURES to install dev—-pkgs, you might not want to
install all_packages from a particular multilib. If you find yourself in this
situation, you can use the

PACKAGE EXCLUDE COMPLEMENTARY variable to specify
regular expre_ssions to match the packages you want to exclude.

Lists packages that should not be installed into an image. For example:

PACKAGE_EXCLUDE = "package_name package_name package_name ...

You can set this variable globally in your Llocal .conf file or you can
attach it to a specific image recipe by using the recipe name override:

PACKAGE_EXCLUDE_pn-target_image = "package_name"

If you choose to not install a package using this variable and some other
package is dependent on it (i.e. listed in a recipe's RDEPENDS
variable), the OpenEmbedded build system generates a fatal installation
error. Because the build system halts the process with a fatal error, you
can use the variable with an iterative development process to remove
specific components from a system.

Support for this variable exists only when using the IPK and RPM
packaging backend. Support does not exist for DEB.

See the NO_RECOMMENDATTIONS and the
BAD RECOMMENDATTONS variables for related information.

Specifies the list of architectures compatible with the device CPU. This
variable is useful when you build for several different devices that use
miscellaneous processors such as XScale and ARM926-EJS.

Optionally specifies the package architectures used as part of the package
feed URIs during the build. When used, the

PACKAGE FEED ARCHS variable is appended to the final package
feed URI, which is constructed using the PACKAGE FEED URIS
and PACKAGE FEED BASE PATHS variables. B

Tip
You can use the
PACKAGE_FEEDS_ARCHS variable to

whitelist specific package architectures. If you
do not need to whitelist specific architectures,
which is a common case, you can omit this
variable. Omitting the variable results in all
available architectures for the current machine
being included into remote package feeds.

Consider the following example where the PACKAGE FEED URIS,
PACKAGE FEED BASE PATHS, and - B
PACKAGE FEED ARCHS variables are defined in your
local.conf filer

PACKAGE_FEED_URIS = "https://example.com/packagerepos/release \
https://example.com/packagerepos/updates”

PACKAGE_FEED_BASE_PATHS = "rpm rpm-dev"

PACKAGE_FEED_ARCHS = "all core2-64"

Given these settings, the resulting package feeds are as follows:

https://example.com/packagerepos/release/rpm/all
https://example.com/packagerepos/release/rpm/core2-64
https://example.com/packagerepos/release/rpm-dev/all
https://example.com/packagerepos/release/rpm-dev/core2-64
https://example.com/packagerepos/updates/rpm/all
https://example.com/packagerepos/updates/rpm/core2-64
https://example.com/packagerepos/updates/rpm-dev/all
https://example.com/packagerepos/updates/rpm-dev/core2-64

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

184/235

3/4/2020 Yocto Project Reference Manual

PACKAGE_FEED_BASE_PATHSY|
Specifies the base path used when constructing package feed URIs. The
PACKAGE FEED BASE PATHS variable makes up the middle
portion of a package feed URI used by the OpenEmbedded build system.
The base path lies between the PACKAGE _FEED URTS and
PACKAGE_FEED_ARCHS variables.

Consider the following example where the PACKAGE FEED URIS,
PACKAGE FEED BASE PATHS, and - -
PACKAGE FEED ARCHS variables are defined in your
local.conf file:

PACKAGE_FEED_URIS = "https://example.com/packagerepos/release \
https://example.com/packagerepos/updates"”

PACKAGE_FEED_BASE_PATHS = "rpm rpm-dev"

PACKAGE_FEED_ARCHS = "all core2-64"

Given these settings, the resulting package feeds are as follows:

https://example.com/packagerepos/release/rpm/all
https://example.com/packagerepos/release/rpm/core2-64
https://example.com/packagerepos/release/rpm-dev/all
https://example.com/packagerepos/release/rpm-dev/core2-64
https://example.com/packagerepos/updates/rpm/all
https://example.com/packagerepos/updates/rpm/core2-64
https://example.com/packagerepos/updates/rpm-dev/all
https://example.com/packagerepos/updates/rpm-dev/core2-64

PACKAGE_FEED_URISY|
Specifies the front portion of the package feed URI used by the
OpenEmbedded build system. Each final package feed URI is comprised of
PACKAGE_FEED_URI S, PACKAGE_FEE D_BASE_PATHS,
and PACKAGE _FEED ARCHS variables.

Consider the following example where the PACKAGE FEED URIS,
PACKAGE FEED BASE PATHS, and
PACKAGE FEED ARCHS variables are defined in your
local.conf file:

PACKAGE_FEED_URIS = "https://example.com/packagerepos/release \
https://example.com/packagerepos/updates"”

PACKAGE_FEED_BASE_PATHS = "rpm rpm-dev"

PACKAGE_FEED_ARCHS = "all core2-64"

Given these settings, the resulting package feeds are as follows:

https://example.com/packagerepos/release/rpm/all
https://example.com/packagerepos/release/rpm/core2-64
https://example.com/packagerepos/release/rpm-dev/all
https://example.com/packagerepos/release/rpm-dev/core2-64
https://example.com/packagerepos/updates/rpm/all
https://example.com/packagerepos/updates/rpm/core2-64
https://example.com/packagerepos/updates/rpm-dev/all
https://example.com/packagerepos/updates/rpm-dev/core2-64

PACKAGE_GROUPY|
The PACKAGE _GROUP variable has been renamed to
FEATURE PACKAGES. See the variable description for
FEATURE:PACKAGES for information.

If if you use the PACKAGE GROUP variable, the OpenEmbedded
build system issues a warning message.

PACKAGE_INSTALLS|
The final list of packages passed to the package manager for installation
into the image.

Because the package manager controls actual installation of all packages,
the list of packages passed using PACKAGE INSTALL is not the
final list of packages that are actually installed. This variable is internal to
the image construction code. Consequently, in general, you should use the
IMAGE TINSTALL variable to specify packages for installation. The
exception_to this is when working with the core—image_—
minimal-initramfs image. When working with an initial RAM
filesystem (initramfs) image, use the PACKAGE INSTALL variable.
For information on creating an initramfs, see the ”Euildinq an Initial RAM

Tasks Manual.

PACKAGE_INSTALL_ATTEMPTONLYY]
Specifies a list of packages the OpenEmbedded build system attempts to
install when creating an image. If a listed package fails to install, the build

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 185/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#building-an-initramfs-image

3/4/2020

Yocto Project Reference Manual

system does not generate an error. This variable is generally not user-
defined.

PACKAGE_PREPROCESS_FUNCSY|

Specifies a list of functions run to pre-process the PKGD directory prior

to

PACKAGE_WRITE_DEPSS|

splitting the files out to individual packages.

Specifies a list of dependencies for post-installation and pre-installation
scripts on native/cross tools. If your post-installation or pre-installation
script can execute at rootfs creation time rather than on the target but
depends on a native tool in order to execute, you need to list the tools in
PACKAGE_WRI TE_DEPS.

For information on running post-installation scripts, see the "Post-
Installation Scripts" section in the Yocto Project Development Tasks
Manual.

PACKAGECONFIGY|

This variable provides a means of enabling or disabling features of a
recipe on a per-recipe basis. PACKAGECONEF IG blocks are defined in
recipes when you specify features and then arguments that define feature
behaviors. Here is the basic block structure:

<

PACKAGECONFIG ??= "f1 f2 f3 ..."

PACKAGECONFIG[f1] = "--with-f1,--without-f1,build-deps-f1,rt-der
PACKAGECONFIG[f2] = "--with-f2,--without-f2,build-deps-f2,rt-def
PACKAGECONFIG[f3] = "--with-f3,--without-f3,build-deps-f3,rt-deg

»

The PACKAGECONEIG variable itself specifies a space-separated list
of the features to enable. Following the features, you can determine the
behavior of each feature by providing up to five order-dependent
arguments, which are separated by commas. You can omit any argument
you like but must retain the separating commas. The order is important
and specifies the following:

1. Extra arguments that should be added to the configure script
argument list (EXTRA OECONE or
PACKAGECONFETIG CONFARGS) if the feature is enabled.

2. Extra arguments that should be added to EXTRA OECONF or
PACKAGECONFIG CONFARGS if the feature is disabled.

3. Additional build dependencies (DEPENDS) that should be added
if the feature is enabled.

4. Additional runtime dependencies (RDE PENDS) that should be
added if the feature is enabled.

5. Additional runtime recommendations (RRECOMMENDS) that
should be added if the feature is enabled.

Consider the following PACKAGECONEFE I G block taken from the
1ibrsvg recipe. In this example the feature is CrOCO, which has
three arguments that determine the feature's behavior.

PACKAGECONFIG ??= "croco"
PACKAGECONFIG[croco] = "--with-croco,--without-croco,libcroco”

The ——with-croco and 1ibcroco arguments apply only if the
feature is enabled. In this case, ——with—-croco is added to the
configure script argument list and 1 ilbbcroco is added to DEPENDS.
On the other hand, if the feature is disabled say through a
.bbappend file in another layer, then the second argument ——
without—-croco is added to the configure script rather than ——
with-croco.

The basic PACKAGECONE'IG structure previously described holds
true regardless of whether you are creating a block or changing a block.
When creating a block, use the structure inside your recipe.

If you want to change an existing PACKAGECONEF IG block, you can

do

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

so one of two ways:

Append file: Create an append file named recipename . Dbappend
in your layer and override the value of PACKAGECONFIG. You can
either completely override the variable:

PACKAGECONFIG = "f4 5"

Or, you can just append the variable:

186/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#new-recipe-post-installation-scripts

3/4/2020 Yocto Project Reference Manual
PACKAGECONFIG_append = " f4"

e Configuration file: This method is identical to changing the block
through an append file except you edit your L1ocal .conf or
mydistro.conf file. As with append files previously described, you
can either completely override the variable:

PACKAGECONFIG_pn-recipename = "f4 5"

Or, you can just amend the variable:
PACKAGECONFIG_append_pn-recipename = " f4"
PACKAGECONFIG_CONFARGS]|

A space-separated list of configuration options generated from the
PACKAGECONFTG setting.

Classes such as autotools and cmake use
PACKAGECONFIG CONFARGS to pass PACKAGECONFIG
options to configu?e and cmake, respectively. If you are using
PACKAGECONFIG but not a class that handles the

do configure task, then you need to use
PA@KAGECONFIG_CONFARGS appropriately.

PACKAGEGROUP_DISABLE_COMPLEMENTARY
For recipes inheriting the packagegroup class, setting
PACKAGEGROUP_ DISABLE COMPLEMENTARY to "1"
specifies that the normal complementary packages (i.e. —dev, —dbg,
and so forth) should not be automatically created by the
packagegroup recipe, which is the default behavior.

PACKAGESY|
The list of packages the recipe creates. The default value is the following:

${PN}-dbg ${PN}-staticdev ${PN}-dev ${PN}-doc ${PN}-locale ${PAC
| >

During packaging, the d0_package task goes through PACKAGES
and uses the FILES variable corresponding to each package to assign
files to the package. If a file matches the FILES variable for more than
one package in PACKAGES, it will be assigned to the earliest (leftmost)
package.

Packages in the variable's list that are empty (i.e. where none of the
patterns in FILES pkg match any files installed by the
do_install task) are not generated, unless generation is forced
through the ALL.OW_EMPTY variable.

PACKAGES_DYNAMICY
A promise that your recipe satisfies runtime dependencies for optional
modules that are found in other recipes. PACKAGES DYNAMIC
does not actually satisfy the dependencies, it only states that they should
be satisfied. For example, if a hard, runtime dependency (RDEPENDS)
of another package is satisfied at build time through the
PACKAGES DYNAMIC variable, but a package with the module
name is never;ctually produced, then the other package will be broken.
Thus, if you attempt to include that package in an image, you will get a
dependency failure from the packaging system during the do_rootfs
task.

Typically, if there is a chance that such a situation can occur and the
package that is not created is valid without the dependency being
satisfied, then you should use RRECOMMENDS (a soft runtime
dependency) instead of RDEPENDS.

For an example of how to use the PACKAGES DYNAMIC variable
when you are splitting packages, see the "Handling_Optional Module
Packaging" section in the Yocto Project Development Tasks Manual.

PACKAGESPLITFUNCSY|
Specifies a list of functions run to perform additional splitting of files into
individual packages. Recipes can either prepend to this variable or
prepend to the populate packages function in order to perform
additional package splitting. In either case, the function should set
PACKAGES, FILES, RDEPENDS and other packaging variables
appropriately in order to perform the desired splitting.

PARALLEL_MAKEY|
Extra options passed to the ma ke command during the
doicompile task in order to specify parallel compilation on the local

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 187/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#handling-optional-module-packaging

3/4/2020

PARALLEL_MAKEINSTY|

PATCHRESOLVES

PATCHTOOLY|

Yocto Project Reference Manual

build host. This variable is usually in the form "-j x", where x represents
the maximum number of parallel threads ma ke can run.

Caution

In order for PARALLEL MAKE to be
effective, ma ke must be called with

S EXTRA OEMAKE }. An easy way to
ensure this is to use the oe_runmake
function.

By default, the OpenEmbedded build system automatically sets this
variable to be equal to the number of cores the build system uses.

Note

If the software being built experiences
dependency issues during the do_compile
task that result in race conditions, you can clear
the PARALLEL MAKE variable within the

recipe as a workaround. For information on
addressing race conditions, see the "Debugging
Parallel Make Races" section in the Yocto Project
Development Tasks Manual.

For single socket systems (i.e. one CPU), you should not have to override
this variable to gain optimal parallelism during builds. However, if you
have very large systems that employ multiple physical CPUs, you might
want to make sure the PARALLEL MAKE variable is not set higher
than "-j 20". B

For more information on speeding up builds, see the "Speeding Up a
Build" section in the Yocto Project Development Tasks Manual.

Extra options passed to the make install command during the
do_install taskin order to specify parallel installation. This
variable defaults to the value of PARALLET MAKE.

Notes and Cautions

In order for PARALLEL MAKEINST to
be effective, ma ke must be called with
S{EXTRA OEMAKE }. An easy way to
ensure this is to use the 0e runmake
function. o

If the software being built experiences
dependency issues during the

do install task that result in race
conations, you can clear the

PARALLEL MAKEINST variable within
the recipe as a workaround. For information on
addressing race conditions, see the
"Debugging_Parallel Make Races" section in the
Yocto Project Development Tasks Manual.

Determines the action to take when a patch fails. You can set this variable
to one of two values: "noop" and "user".

The default value of "noop" causes the build to simply fail when the

OpenEmbedded build system cannot successfully apply a patch. Setting
the value to "user" causes the build system to launch a shell and places
you in the right location so that you can manually resolve the conflicts.

Set this variable in your 1ocal . conf file.

Specifies the utility used to apply patches for a recipe during the
do_patch task. You can specify one of three utilities: "patch", "quilt",

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

188/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#debugging-parallel-make-races
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#speeding-up-a-build
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#debugging-parallel-make-races

3/4/2020

PEY|

PFq|

PIXBUF_PACKAGESS|

PKGS

PKG_CONFIG_PATHY

PKGDf|

PKGDATA_DIRSY|

PKGDESTY|

Yocto Project Reference Manual

or "git". The default utility used is "quilt" except for the quilt-native recipe
itself. Because the quilt tool is not available at the time quilt-native is
being patched, it uses "patch".

If you wish to use an alternative patching tool, set the variable in the
recipe using one of the following:

PATCHTOOL = "patch"
PATCHTOOL "quilt"”
PATCHTOOL "git"

The epoch of the recipe. By default, this variable is unset. The variable is
used to make upgrades possible when the versioning scheme changes in
some backwards incompatible way.

PE is the default value of the PKGE variable.

Specifies the recipe or package name and includes all version and revision
numbers (i.e. glibc-2.13-r20+svnr15508/ and bash-
4 .2-r1/). This variable is comprised of the following:

${PN}-${EXTENDPE}${PV}-${PR}

When inheriting the pixbufcache class, this variable identifies
packages that contain the pixbuf loaders used with gdk—pixbuf. By
default, the pixbufcache class assumes that the loaders are in the
recipe's main package (i.e. S { PN }). Use this variable if the loaders you
need are in a package other than that main package.

The name of the resulting package created by the OpenEmbedded build
system.

Note

When using the PKG variable, you must use a
package name override.

For example, when the debian class renames the output package, it
does so by setting PKG_packagename.

The path to pkg—confi(files for the current build context. pkg-
config reads this variable from the environment.

Points to the destination directory for files to be packaged before they are
split into individual packages. This directory defaults to the following:

${WORKDIR}/package
Do not change this default.

Points to a shared, global-state directory that holds data generated during
the packaging process. During the packaging process, the

do packagedata task packages data for each recipe and installs it
into_this temporary, shared area. This directory defaults to the following,
which you should not change:

${STAGING_DIR_HOST}/pkgdata

For examples of how this data is used, see the "Automatically Added
Runtime Dependencies" section in the Yocto Project Overview and
Concepts Manual and the "Viewing_Package Information with oe—
pkgdata—util" section in the Yocto Project Development Tasks
Manual. For more information on the shared, global-state directory, see
STAGING _DIR_HOST.

Points to the parent directory for files to be packaged after they have
been split into individual packages. This directory defaults to the
following:

${WORKDIR}/packages-split

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 189/235

http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#automatically-added-runtime-dependencies
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#viewing-package-information-with-oe-pkgdata-util

3/4/2020

PKGDESTWORKY|

PKGE(

PKGRY

PKGV

PN

PNBLACKLISTY|

POPULATE_SDK_POST_HOST_COMMAND{|

POPULATE_SDK_POST_TARGET_COMMAND¢|

PR

Yocto Project Reference Manual

Under this directory, the build system creates directories for each package
specified in PACKAGES. Do not change this default.

Points to a temporary work area where the doipackagg task saves
package metadata. The PKGDE STWORK location defaults to the
following:

${WORKDIR}/pkgdata

Do not change this default.

The do_packagedata task copies the package metadata from
PKGDESTWORK to PKGDATA _DIR to make it available globally.

The epoch of the package(s) built by the recipe. By default, PKGE is set
to PE.

The revision of the package(s) built by the recipe. By default, PKGR is
set to PR.

The version of the package(s) built by the recipe. By default, PKGV is set
to PV.

This variable can have two separate functions depending on the context: a
recipe name or a resulting package name.

PN refers to a recipe name in the context of a file used by the
OpenEmbedded build system as input to create a package. The name is
normally extracted from the recipe file name. For example, if the recipe is
named expat 2.0.1.Dbb, then the default value of PN will be
"expat".

The variable refers to a package name in the context of a file created or
produced by the OpenEmbedded build system.

If applicable, the PN variable also contains any special suffix or prefix. For
example, using bash to build packages for the native machine, PN is
bash-native. Using bash to build packages for the target and for
Multilib, PN would be bash and 1ib64-bash, respectively.

Lists recipes you do not want the OpenEmbedded build system to build.
This variable works in conjunction with the black1i st class, which is
inherited globally.

To prevent a recipe from being built, use the PNBLACKLI ST variable
inyour local.conf file. Here is an example that prevents
myrecipe from being built:

PNBLACKLIST[myrecipe] = "Not supported by our organization."

Specifies a list of functions to call once the OpenEmbedded build system
has created the host part of the SDK. You can specify functions separated
by semicolons:

POPULATE_SDK_POST_HOST_COMMAND += "function; ... "

If you need to pass the SDK path to a command within a function, you can
use ${ SDK_DIR}, which points to the parent directory used by the
OpenEmbedded build system when creating SDK output. See the
SDK_DIR variable for more information.

Specifies a list of functions to call once the OpenEmbedded build system
has created the target part of the SDK. You can specify functions
separated by semicolons:

POPULATE_SDK_POST_TARGET_COMMAND += "function; ... "

If you need to pass the SDK path to a command within a function, you can
use S { SDK_DIR}, which points to the parent directory used by the
OpenEmbedded build system when creating SDK output. See the
SDK_DTIR variable for more information.

The revision of the recipe. The default value for this variable is "r0".
Subsequent revisions of the recipe conventionally have the values "r1",

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

190/235

3/4/2020 Yocto Project Reference Manual

"r2", and so forth. When PV increases, PR is conventionally reset to "r0".

Note
The OpenEmbedded build system does not need
the aid of PR to know when to rebuild a recipe.

The build system uses the task input checksums
along with the stamp and shared state cache
mechanisms.

The PR variable primarily becomes significant when a package manager
dynamically installs packages on an already built image. In this case, PR,
which is the default value of PKGR, helps the package manager
distinguish which package is the most recent one in cases where many
packages have the same PV (i.e. PKGV). A component having many
packages with the same PV usually means that the packages all install
the same upstream version, but with later (PR) version packages
including packaging fixes.

Note

PR does not need to be increased for changes

that do not change the package contents or
metadata.

Because manually managing PR can be cumbersome and error-prone, an
automated solution exists. See the "Working_With a PR Service" section in
the Yocto Project Development Tasks Manual for more information.

PREFERRED_PROVIDERY|
If multiple recipes provide the same item, this variable determines which
recipe is preferred and thus provides the item (i.e. the preferred
provider). You should always suffix this variable with the name of the
provided item. And, you should define the variable using the preferred
recipe's name (PN). Here is a common example:

PREFERRED_PROVIDER_virtual/kernel ?= "linux-yocto"

In the previous example, multiple recipes are providing "virtual/kernel".
The PREFERRED PROVIDER variable is set with the name (PN) of
the recipe you prefer to provide "virtual/kernel".

Following are more examples:

PREFERRED_PROVIDER_virtual/xserver = "xserver-xf86"
PREFERRED_PROVIDER_virtual/libgl ?= "mesa"

For more information, see the "Using_Virtual Providers" section in the
Yocto Project Development Tasks Manual.

Note

If you use a virtual/* item with
PREFERRED PROVIDER, then any recipe
that PROVIDES that item but is not selected
(defined) by PREFERRED PROVIDERis

prevented from building, which is usually
desirable since this mechanism is designed to
select between mutually exclusive alternative
providers.

PREFERRED_VERSIONS|
If multiple versions of recipes exist, this variable determines which version
is given preference. You must always suffix the variable with the PN you
want to select, and you should set the PV accordingly for precedence.

The PREFERRED VERSTON variable supports limited wildcard use
through the "%" character. You can use the character to match any
number of characters, which can be useful when specifying versions that
contain long revision numbers that potentially change. Here are two
examples:

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 191/235

http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#overview-checksums
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#shared-state-cache
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#working-with-a-pr-service
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#metadata-virtual-providers

3/4/2020

PREMIRRORS|

PRIORITYY|

Yocto Project Reference Manual

PREFERRED_VERSION_python = "3.4.@"
PREFERRED_VERSTON_linux-yocto = "5.0%"

Important

The use of the "%" character is limited in that it

only works at the end of the string. You cannot
use the wildcard character in any other location
of the string.

The specified version is matched against PV, which does not necessarily

match the version part of the recipe's filename. For example, consider two

recipes foo 1.2.bband foo git.bb where foo git.bb

contains the l%llowing assignment:

PV = "1.1+git${SRCPV}"

In this case, the correct way to select foo_git . bb is by using an
assignment such as the following:

PREFERRED_VERSION_foo = "1.1+git%"

Compare that previous example against the following incorrect example,
which does not work:

PREFERRED_VERSTON_foo = "git"

Sometimes the PREFERRED VERSTON variable can be set by
configuration files in a way that is hard to change. You can use
OVERRTDES to set a machine-specific override. Here is an example:

PREFERRED_VERSION_linux-yocto_gemux86 = "5.0%"

Although not recommended, worst case, you can also use the
"forcevariable" override, which is the strongest override possible. Here is
an example:

PREFERRED_VERSION_linux-yocto_forcevariable = "5.0%"

Note

The forcevariable override is not
handled specially. This override only works
because the default value of OVERRIDES
includes "forcevariable".

Specifies additional paths from which the OpenEmbedded build system
gets source code. When the build system searches for source code, it first
tries the local download directory. If that location fails, the build system
tries locations defined by PREMIRRORS, the upstream source, and
then locations specified by MTRRORS in that order.

Assuming your distribution (DI STRO) is "poky", the default value for
PREMIRRORS is defined in the conf/distro/poky.conf
file in the meta—poky Git repository.

Typically, you could add a specific server for the build system to attempt
before any others by adding something like the following to the
local.conf configuration file in the Build Directory:

PREMIRRORS_prepend = "\

git://.*/.* http://www.yoctoproject.org/sources/ \n \
ftp://.*/.* http://www.yoctoproject.org/sources/ \n \
http://.*/.* http://www.yoctoproject.org/sources/ \n \
https://.*/.* http://www.yoctoproject.org/sources/ \n"

These changes cause the build system to intercept Git, FTP, HTTP, and
HTTPS requests and direct them to the http:// sources mirror. You
canuse file:// URLs to point to local directories or network shares
as well.

Indicates the importance of a package.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

192/235

3/4/2020

PRIVATE_LIBSY|

PROVIDESY|

Yocto Project Reference Manual

PRIORITY is considered to be part of the distribution policy because
the importance of any given recipe depends on the purpose for which the
distribution is being produced. Thus, PRIORITY is not normally set
within recipes.

You can set PRIORITY to "required", "standard", "extra", and
"optional", which is the default.

Specifies libraries installed within a recipe that should be ignored by the
OpenEmbedded build system's shared library resolver. This variable is
typically used when software being built by a recipe has its own private
versions of a library normally provided by another recipe. In this case, you
would not want the package containing the private libraries to be set as a
dependency on other unrelated packages that should instead depend on
the package providing the standard version of the library.

Libraries specified in this variable should be specified by their file name.
For example, from the Firefox recipe in meta-browser:

PRIVATE_LIBS = "libmozjs.so \
libxpcom.so \
libnspr4.so \
libxul.so \
libmozalloc.so \
libplc4.so \
libplds4.so"

For more information, see the "Automatically Added Runtime
Dependencies" section in the Yocto Project Overview and Concepts
Manual.

A list of aliases by which a particular recipe can be known. By default, a
recipe's own PN is implicitly already in its PROVIDES list. If a recipe
uses PROVIDES, the additional aliases are synonyms for the recipe
and can be useful satisfying dependencies of other recipes during the
build as specified by DEPENDS.

Consider the following example PROVIDES statement from a recipe file
libaV_O .8.11.bb:

PROVIDES += "libpostproc"

The PROVIDES statement results in the "libav" recipe also being
known as "libpostproc".

In addition to providing recipes under alternate names, the PROVIDES
mechanism is also used to implement virtual targets. A virtual target is a
name that corresponds to some particular functionality (e.g. a Linux
kernel). Recipes that provide the functionality in question list the virtual
target in PROVIDES. Recipes that depend on the functionality in
question can include the virtual target in DEPENDS to leave the choice
of provider open.

Conventionally, virtual targets have names on the form "virtual/function"
(e.g. "virtual/kernel"). The slash is simply part of the name and has no
syntactical significance.

The PREFERRED PROVIDER variable is used to select which
particular recipe provides a virtual target.

Note

A corresponding mechanism for virtual runtime
dependencies (packages) exists. However, the
mechanism does not depend on any special
functionality beyond ordinary variable
assignments. For example, VIRTUAL-
RUNTIME dev manager refers to the
package of the comp_onent that manages the
/dev directory.

Setting the "preferred provider" for runtime
dependencies is as simple as using the
following assignment in a configuration file:

VIRTUAL-RUNTIME_dev_manager = "udev"

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 193/235

http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#automatically-added-runtime-dependencies

3/4/2020
PRSERV_HOSTY|

PTEST_ENABLEDS

PVY|

PYTHON_ABIY|

PYTHON_PN(|

RANLIB

RCONFLICTS

Yocto Project Reference Manual

The network based PR service host and port.

The conf/local.conf.sample.extended configuration
file in the Source Directory shows how the PRSERV_HOST variable is
set:

PRSERV_HOST = "localhost:0"

You must set the variable if you want to automatically start a local PR
service. You can set PRSERV_HOST to other values to use a remote
PR service.

Specifies whether or not Package Test (ptest) functionality is enabled
when building a recipe. You should not set this variable directly. Enabling
and disabling building Package Tests at build time should be done by
adding "ptest" to (or removing it from) DISTRO FEATURES.

The version of the recipe. The version is normally extracted from the
recipe filename. For example, if the recipe is named

expat 2.0.1.bb, then the default value of PV will be "2.0.1".
PV is generally not overridden within a recipe unless it is building an
unstable (i.e. development) version from a source code repository (e.g.
Git or Subversion).

PV is the default value of the PKGV variable.

When used by recipes that inherit the distutils3,
setuptools3,distutils, orsetuptools classes,
denotes the Application Binary Interface (ABI) currently in use for Python.
By default, the ABI is "m". You do not have to set this variable as the
OpenEmbedded build system sets it for you.

The OpenEmbedded build system uses the ABI to construct directory
names used when installing the Python headers and libraries in sysroot
(e.g. . ../python3.3m/...).

Recipes that inherit the distutils class during cross-builds also use
this variable to locate the headers and libraries of the appropriate Python
that the extension is targeting.

When used by recipes that inherit the distutils3,

specifies the major Python version being built. For Python 3.x,
PYTHON PN would be "python3". You do not have to set this variable
as the OpenEmbedded build system automatically sets it for you.

The variable allows recipes to use common infrastructure such as the
following:

DEPENDS += "${PYTHON_PN}-native"

In the previous example, the version of the dependency is
PYTHON PN.

The minimal command and arguments to run ranlib.

The list of packages that conflict with packages. Note that packages will
not be installed if conflicting packages are not first removed.

Like all package-controlling variables, you must always use them in
conjunction with a package name override. Here is an example:

RCONFLICTS_${PN} = "another_conflicting_package_name"

BitBake, which the OpenEmbedded build system uses, supports specifying
versioned dependencies. Although the syntax varies depending on the
packaging format, BitBake hides these differences from you. Here is the
general syntax to specify versions with the RCONFLICTS variable:

RCONFLICTS_${PN} = "package (operator version)"

For operator, you can specify the following:

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 194/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#working-with-a-pr-service
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#testing-packages-with-ptest

3/4/2020 Yocto Project Reference Manual

For example, the following sets up a dependency on version 1.2 or greater
of the package foO0:

RCONFLICTS_${PN} = "foo (>= 1.2)"

RDEPENDS(|
Lists runtime dependencies of a package. These dependencies are other
packages that must be installed in order for the package to function
correctly. As an example, the following assignment declares that the
package £ 0O needs the packages bar and baz to be installed:

RDEPENDS_foo = "bar baz"

The most common types of package runtime dependencies are
automatically detected and added. Therefore, most recipes do not need to
set RDEPENDS. For more information, see the "Automatically Added
Runtime Dependencies" section in the Yocto Project Overview and
Concepts Manual.

The practical effect of the above RDEPENDS assignment is that bar
and ba z will be declared as dependencies inside the package £ 00O when
it is written out by one of the do_package write * tasks.
Exactly how this is done depends on which package format is used, which
is determined by PACKAGE_CLASSES. When the corresponding
package manager installs the package, it will know to also install the

packages on which it depends.

To ensure that the packages bar and baz get built, the previous
RDEPENDS assignment also causes a task dependency to be added.
This dependency is from the recipe's do bui 1d (not to be confused
with do_compile)task tothe do package write * task
of the recipes that build bar and baz. N N

The names of the packages you list within RDEPENDS must be the
names of other packages - they cannot be recipe names. Although
package names and recipe names usually match, the important point here
is that you are providing package names within the RDEPENDS
variable. For an example of the default list of packages created from a
recipe, see the PACKAGES variable.

Because the RDEPENDS variable applies to packages being built, you
should always use the variable in a form with an attached package name
(remember that a single recipe can build multiple packages). For example,
suppose you are building a development package that depends on the
perl package. In this case, you would use the following RDEPENDS
statement:

RDEPENDS_${PN}-dev += "perl"

In the example, the development package depends on the perl
package. Thus, the RDEPENDS variable has the $ { PN} —dev
package name as part of the variable.

Caution
RDEPENDS_$ {PN}-devV includes
S{PN} by default. This default is set in the

BitBake configuration file
(meta/conf/bitbake.conf).Be

careful not to accidentally remove $ { PN }
when modifying RDEPENDS S {PN} -
dev. Use the "+=" operator rather than the
"=" operator.

The package names you use with RDEPENDS must appear as they
would in the PACKAGES variable. The PKG variable allows a different
name to be used for the final package (e.g. the debian class uses this
to rename packages), but this final package name cannot be used with
RDEPENDS, which makes sense as RDEPENDS is meant to be
independent of the package format used.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 195/235

http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#automatically-added-runtime-dependencies

3/4/2020 Yocto Project Reference Manual

BitBake, which the OpenEmbedded build system uses, supports specifying
versioned dependencies. Although the syntax varies depending on the
packaging format, BitBake hides these differences from you. Here is the
general syntax to specify versions with the RDEPENDS variable:

RDEPENDS_${PN} = "package (operator version)"

For operator, you can specify the following:

For version, provide the version number.

Tip
You can use EXTENDPKGV to provide a full
package version specification.

For example, the following sets up a dependency on version 1.2 or greater
of the package foO0:

RDEPENDS_${PN} = "foo (>= 1.2)"

For information on build-time dependencies, see the DEPENDS variable.
You can also see the "Tasks" and "Dependencies" sections in the BitBake
User Manual for additional information on tasks and dependencies.

REQUIRED_DISTRO_FEATURESY|
When inheriting the distro features check class, this
variable identifies distribution features that must exist in the current
configuration in order for the OpenEmbedded build system to build the
recipe. In other words, if the REQUIRED DISTRO FEATURES
variable lists a feature that does not appear in DISTRO FEATURES
within the current configuration, an error occurs and the build stops.

RM_WORK_EXCLUDEY
With rm_work enabled, this variable specifies a list of recipes whose
work directories should not be removed. See the
"rm_work.bbclass" section for more details.

ROOT_HOME(|
Defines the root home directory. By default, this directory is set as follows
in the BitBake configuration file:
ROOT_HOME ??= "/home/root"
Note
This default value is likely used because some
embedded solutions prefer to have a read-only
root filesystem and prefer to keep writeable data
in one place.
You can override the default by setting the variable in any layer or in the
local.conf file. Because the default is set using a "weak"
assignment (i.e. "??="), you can use either of the following forms to
define your override:
ROOT_HOME = "/root"
ROOT_HOME ?= "/root"
These override examples use /root, which is probably the most
commonly used override.
ROOTFS

Indicates a filesystem image to include as the root filesystem.

The ROOTF'S variable is an optional variable used with the image—
live class.

ROOTFS_POSTINSTALL_COMMANDY]|

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 196/235

http://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html#tasks
http://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html#dependencies

3/4/2020

ROOTFS_POSTPROCESS_COMMANDY|

ROOTFS_POSTUNINSTALL_COMMAND¢|

ROOTFS_PREPROCESS_COMMANDY|

RPROVIDESS|

RRECOMMENDSS|

Yocto Project Reference Manual

Specifies a list of functions to call after the OpenEmbedded build system
has installed packages. You can specify functions separated by
semicolons:

ROOTFS_POSTINSTALL_COMMAND += "function; ... "

If you need to pass the root filesystem path to a command within a
function, you can use $ { IMAGE ROOQOTFES}, which points to the
directory that becomes the root filesystem image. See the
IMAGE_ROOTE'S variable for more information.

Specifies a list of functions to call once the OpenEmbedded build system
has created the root filesystem. You can specify functions separated by
semicolons:

ROOTFS_POSTPROCESS_COMMAND += "function; ... "

If you need to pass the root filesystem path to a command within a
function, you can use $ { IMAGE ROOTFS }, which points to the
directory that becomes the root file_system image. See the

IMAGE ROOTE'S variable for more information.

Specifies a list of functions to call after the OpenEmbedded build system
has removed unnecessary packages. When runtime package management
is disabled in the image, several packages are removed including base—
passwd, shadow, and update-alternatives. You can
specify functions separated by semicolons:

ROOTFS_POSTUNINSTALL_COMMAND += "function; ... "

If you need to pass the root filesystem path to a command within a
function, you can use $ { IMAGE ROOTF'S }, which points to the
directory that becomes the root filesystem image. See the

IMAGE _ROOTE'S variable for more information.

Specifies a list of functions to call before the OpenEmbedded build system
has created the root filesystem. You can specify functions separated by
semicolons:

ROOTFS_PREPROCESS_COMMAND += "function; ... "

If you need to pass the root filesystem path to a command within a
function, you can use $ { IMAGE ROOQOTFES}, which points to the
directory that becomes the root filesystem image. See the

IMAGE _ROOTE'S variable for more information.

A list of package name aliases that a package also provides. These aliases
are useful for satisfying runtime dependencies of other packages both
during the build and on the target (as specified by RDEPENDS).

Note
A package's own name is implicitly already in its
RPROVIDES list.

As with all package-controlling variables, you must always use the
variable in conjunction with a package name override. Here is an
example:

RPROVIDES_${PN} = "widget-abi-2"

A list of packages that extends the usability of a package being built. The
package being built does not depend on this list of packages in order to
successfully build, but rather uses them for extended usability. To specify
runtime dependencies for packages, see the RDEPENDS variable.

The package manager will automatically install the RRECOMMENDS list
of packages when installing the built package. However, you can prevent
listed packages from being installed by using the

BAD RECOMMENDATIONS, NO RECOMMENDATIONS, and
PACKAGE EXCLUDE variables.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

197/235

3/4/2020

RREPLACESS

RSUGGESTSS

Yocto Project Reference Manual

Packages specified in RRECOMMENDS need not actually be produced.
However, a recipe must exist that provides each package, either through
the PACKAGES or PACKAGES DYNAMIC variables or the
RPROVIDES variable, or an error will occur during the build. If such a
recipe does exist and the package is not produced, the build continues
without error.

Because the RRECOMMENDS variable applies to packages being built,
you should always attach an override to the variable to specify the
particular package whose usability is being extended. For example,
suppose you are building a development package that is extended to
support wireless functionality. In this case, you would use the following:

RRECOMMENDS_${PN}-dev += "wireless_package_name"

In the example, the package name ($ { PN } —dev) must appear as it
would in the PACKAGES namespace before any renaming of the output
package by classes such as debian.bbclass.

BitBake, which the OpenEmbedded build system uses, supports specifying
versioned recommends. Although the syntax varies depending on the
packaging format, BitBake hides these differences from you. Here is the
general syntax to specify versions with the RRECOMMENDS variable:

RRECOMMENDS_${PN} = "package (operator version)"

For operator, you can specify the following:

For example, the following sets up a recommend on version 1.2 or greater
of the package foo:

RRECOMMENDS_${PN} = "foo (>= 1.2)"

A list of packages replaced by a package. The package manager uses this
variable to determine which package should be installed to replace other

package(s) during an upgrade. In order to also have the other package(s)
removed at the same time, you must add the name of the other package

to the RCONFLICTS variable.

As with all package-controlling variables, you must use this variable in
conjunction with a package name override. Here is an example:

RREPLACES_${PN} = "other_package_being_replaced"

BitBake, which the OpenEmbedded build system uses, supports specifying
versioned replacements. Although the syntax varies depending on the
packaging format, BitBake hides these differences from you. Here is the
general syntax to specify versions with the RREPLACES variable:

RREPLACES_${PN} = "package (operator version)"

For operator, you can specify the following:

For example, the following sets up a replacement using version 1.2 or
greater of the package foo0:

RREPLACES_${PN} = "foo (>= 1.2)"

A list of additional packages that you can suggest for installation by the
package manager at the time a package is installed. Not all package
managers support this functionality.

As with all package-controlling variables, you must always use this
variable in conjunction with a package name override. Here is an
example:

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

198/235

3/4/2020 Yocto Project Reference Manual
RSUGGESTS_${PN} = "useful_package another_package"

S
The location in the Build Directory where unpacked recipe source code
resides. By default, this directory is
S{WORKDIR}/S{BPN}-${PV}, where $ {BPN} is the base
recipe name and S { PV} is the recipe version. If the source tarball
extracts the code to a directory named anything other than
S{BPN}—-${PV}, orif the source code is fetched from an SCM such
as Git or Subversion, then you must set S in the recipe so that the
OpenEmbedded build system knows where to find the unpacked source.

As an example, assume a Source Directory top-level folder named poky
and a default Build Directory at poky/bui 1d. In this case, the work
directory the build system uses to keep the unpacked recipe for db is the
following:

poky/build/tmp/work/qemux86-poky-linux/db/5.1.19-r3/db-5.1.19

The unpacked source code resides in the db—5.1 .19 folder.

This next example assumes a Git repository. By default, Git repositories
are cloned to $ {WORKDIR} /git duringdo fetch. Since this
path is different from the default value of S, you must set it specifically so
the source can be located:

SRC_URI = "git://path/to/repo.git"
S = "${WORKDIR}/git"

SANITY_REQUIRED_UTILITIES
Specifies a list of command-line utilities that should be checked for during
the initial sanity checking process when running BitBake. If any of the
utilities are not installed on the build host, then BitBake immediately exits
with an error.

SANITY_TESTED_DISTROSY|
A list of the host distribution identifiers that the build system has been

tested against. Identifiers consist of the host distributor ID followed by the
release, as reported by the 1 sb release tool or as read from
/etc/lsb-release. Separate the list items with explicit newline
characters (\n). If SANITY TESTED DISTROS is not empty
and the current value of NATIVELSBSTRING does not appear in the
list, then the build system reports a warning that indicates the current
host distribution has not been tested as a build host.

SDK_ARCHY|
The target architecture for the SDK. Typically, you do not directly set this

variable. Instead, use SDKMACHINE.

SDK_DEPLOYY
The directory set up and used by the populate sdk base class

to which the SDK is deployed. The populate sdk base class
defines SDK_DEPLOQOY as follows:

SDK_DEPLOY = "${TMPDIR}/deploy/sdk"

SDK_DIRS|
The parent directory used by the OpenEmbedded build system when
creating SDK output. The populate sdk base class defines the
variable as follows:

SDK_DIR = "${WORKDIR}/sdk"

Note

The SDK_DIR directory is a temporary
directory as it is part of WORKDTIR. The final
output directory is SDK_DEPLOY.

SDK_EXT_TYPE(
Controls whether or not shared state artifacts are copied into the
extensible SDK. The default value of "full" copies all of the required shared

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 199/235

3/4/2020

SDK_HOST_MANIFEST|

SDK_INCLUDE_PKGDATA(|

SDK_INCLUDE_TOOLCHAIN(|

SDK_INHERIT_BLACKLISTY|

SDK_LOCAL_CONF_BLACKLIST|

Yocto Project Reference Manual

state artifacts into the extensible SDK. The value "minimal" leaves these
artifacts out of the SDK.

Note
If you set the variable to "minimal", you need to
ensure SSTATE MTIRRORS is set in the

SDK's configuration to enable the artifacts to be
fetched as needed.

The manifest file for the host part of the SDK. This file lists all the installed
packages that make up the host part of the SDK. The file contains
package information on a line-per-package basis as follows:

packagename packagearch version

The populate sdk base class defines the manifest file as
follows:

SDK_HOST_MANIFEST = "${SDK_DEPLOY}/${TOOLCHAIN_OUTPUTNAME}.host.

< »

The location is derived using the SDK_DEPLOY and
TOOLCHATN OUTPUTNAME variables.

When set to "1", specifies to include the packagedata for all recipes in the
"world" target in the extensible SDK. Including this data allows the
devtool search command to find these recipes in search results,
as well as allows the devtool add command to map dependencies
more effectively.

Note
Enabling the SDK_INCLUDE PKGDATA

variable significantly increases build time
because all of world needs to be built. Enabling
the variable also slightly increases the size of the
extensible SDK.

When set to "1", specifies to include the toolchain in the extensible SDK.
Including the toolchain is useful particularly when SDK_EXT TYPFE is
set to "minimal" to keep the SDK reasonably small but ﬁ)u still want to
provide a usable toolchain. For example, suppose you want to use the
toolchain from an IDE or from other tools and you do not want to perform
additional steps to install the toolchain.

The SDK_INCLUDE TOOLCHATN variable defaults to "0" if
SDK_EXT_TYPE is set to "minimal", and defaults to "1" if
SDK_EXT TYPE is set to "full".

A list of classes to remove from the INHERTT value globally within the
extensible SDK configuration. The populate—-sdk-ext class sets
the default value:

SDK_INHERIT_BLACKLIST ?= "buildhistory icecc"

Some classes are not generally applicable within the extensible SDK
context. You can use this variable to disable those classes.

For additional information on how to customize the extensible SDK's
configuration, see the "Configuring_the Extensible SDK" section in the
Yocto Project Application Development and the Extensible Software
Development Kit (eSDK) manual.

A list of variables not allowed through from the OpenEmbedded build
system configuration into the extensible SDK configuration. Usually, these
are variables that are specific to the machine on which the build system is
running and thus would be potentially problematic within the extensible
SDK.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

200/235

http://www.yoctoproject.org/docs/3.1/sdk-manual/sdk-manual.html#sdk-configuring-the-extensible-sdk

3/4/2020

SDK_LOCAL_CONF_WHITELISTY|

SDK_NAME(|

SDK_0Sf

SDK_OUTPUTY

SDK_PACKAGE_ARCHSY|

SDK_POSTPROCESS_COMMAND{|

Yocto Project Reference Manual

By default, SDK_LOCAL CONF BLACKLIST is setin the
populate—-sdk—ext class and excludes the following variables:

CONF_VERSION

BB_NUMBER THREADS
BB_NUMBER PARSE_ THREADS
PARALLEL MAKE
PRSERV_HOST

SSTATE MIRRORS

DL_DIR

SSTATE DIR

TMPDIR

BB_SERVER TIMEOUT

For additional information on how to customize the extensible SDK's
configuration, see the "Configuring_the Extensible SDK" section in the
Yocto Project Application Development and the Extensible Software
Development Kit (eSDK) manual.

A list of variables allowed through from the OpenEmbedded build system
configuration into the extensible SDK configuration. By default, the list of
variables is empty and is set in the populate—-sdk—ext class.

This list overrides the variables specified using the

SDK LOCAIL CONF BILACKLIST variable as well as any
variables identified by automatic blacklisting due to the "/" character
being found at the start of the value, which is usually indicative of being a
path and thus might not be valid on the system where the SDK is
installed.

For additional information on how to customize the extensible SDK's
configuration, see the "Configuring_the Extensible SDK" section in the
Yocto Project Application Development and the Extensible Software
Development Kit (eSDK) manual.

The base name for SDK output files. The name is derived from the
DISTRO, TCLIRBC, SDK_ARCH, IMAGE_BASENAME, and
TUNE_PKGARCH variables:

SDK_NAME = "${DISTRO}-${TCLIBC}-${SDK_ARCH}-${IMAGE_BASENAME}-${

| >

Specifies the operating system for which the SDK will be built. The default
value is the value of BUTLD OS.

The location used by the OpenEmbedded build system when creating SDK
output. The populate sdk base class defines the variable as
follows:

SDK_DIR = "${WORKDIR}/sdk"
SDK_OUTPUT = "${SDK_DIR}/image"
SDK_DEPLOY = "${DEPLOY_DIR}/sdk"

Note

The SDK_OUTPUT directory is a temporary
directory as it is part of WORKDTIR by way of
SDK_DTR. The final output directory is
SDK_DEPT.OY.

Specifies a list of architectures compatible with the SDK machine. This
variable is set automatically and should not normally be hand-edited.
Entries are separated using spaces and listed in order of priority. The
default value for SDK PACKAGE ARCHS is "all any noarch
${SDK_ARCH}-${SDKPKGSUFFIX}".

Specifies a list of functions to call once the OpenEmbedded build system
creates the SDK. You can specify functions separated by semicolons:

SDK_POSTPROCESS_COMMAND += "function; ... "

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

201/235

http://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html#var-BB_NUMBER_PARSE_THREADS
http://www.yoctoproject.org/docs/3.1/sdk-manual/sdk-manual.html#sdk-configuring-the-extensible-sdk
http://www.yoctoproject.org/docs/3.1/sdk-manual/sdk-manual.html#sdk-configuring-the-extensible-sdk

3/4/2020 Yocto Project Reference Manual

If you need to pass an SDK path to a command within a function, you can
use S { SDK_DIR}, which points to the parent directory used by the
OpenEmbedded build system when creating SDK output. See the
SDK_DIR variable for more information.

SDK_PREFIXY|
The toolchain binary prefix used for nat ivesdk recipes. The
OpenEmbedded build system uses the SDK PREFIX value to set the
TARGET PREFIX when building nativesdk recipes. The
default value is "${SDK_SYS3}-".

SDK_RECRDEP_TASKSY|
A list of shared state tasks added to the extensible SDK. By default, the

following tasks are added:

do_populate_lic
do_package_qga
do_populate_sysroot
do_deploy

Despite the default value of "" for the SDK RECRDEP TASKS
variable, the above four tasks are always added to the SDK. To specify
tasks beyond these four, you need to use the

SDK RECRDEP TASKS variable (e.g. you are defining additional
tasks that are needed in order to build SDK_TARGETS).

SDK_SYS
Specifies the system, including the architecture and the operating system,
for which the SDK will be built.

The OpenEmbedded build system automatically sets this variable based on
SDK_ARCH, SDK_VENDOR, and SDK_OS. You do not need to set
the SDK_SYS variable yourself.

SDK_TARGET_MANIFEST
The manifest file for the target part of the SDK. This file lists all the

installed packages that make up the target part of the SDK. The file
contains package information on a line-per-package basis as follows:

packagename packagearch version

Thepopulate sdk base class defines the manifest file as
follows:

SDK_TARGET_MANIFEST = "${SDK_DEPLOY}/${TOOLCHAIN_OUTPUTNAME}.tar
< »

The location is derived using the SDK_DEPLOY and
TOOLCHATIN OUTPUTNAME variables.

SDK_TARGETSY|
A list of targets to install from shared state as part of the standard or

extensible SDK installation. The default value is "${PN}" (i.e. the image
from which the SDK is built).

The SDK_TARGETS variable is an internal variable and typically would
not be changed.

SDK_TITLE
The title to be printed when running the SDK installer. By default, this title
is based on the DISTRO NAME or DISTRO variable and is set in
the populate sdk base class as follows:

SDK_TITLE ??= "${@d.getVar('DISTRO_NAME') or d.getVar('DISTRO')}
| >

For the default distribution "poky", SDK TITLE is set to "Poky (Yocto
Project Reference Distro)".

For information on how to change this default title, see the "Changing_the
Extensible SDK Installer Title" section in the Yocto Project Application
Development and the Extensible Software Development Kit (eSDK)
manual.

SDK_UPDATE_URLY
An optional URL for an update server for the extensible SDK. If set, the

value is used as the default update server when running devtool
sdk-update within the extensible SDK.

SDK_VENDORY|
Specifies the name of the SDK vendor.

SDK_VERSION{|

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 202/235

http://www.yoctoproject.org/docs/3.1/sdk-manual/sdk-manual.html#sdk-changing-the-sdk-installer-title

3/4/2020

SDKEXTPATHY|

SDKIMAGE_FEATURESY|

SDKMACHINES|

SDKPATHY|

SDKTARGETSYSROOTY|

SECTIONY|

SELECTED_OPTIMIZATIONY|

SERIAL_CONSOLES|

Yocto Project Reference Manual

Specifies the version of the SDK. The distribution configuration file (e.g.
/meta-poky/conf/distro/poky.conf) defines the
SDK_VERSTON as follows:

SDK_VERSION = "${@d.getVar('DISTRO_VERSION"').replace('snapshot-$
< >

For additional information, see the DISTRO _VERSTON and DATE
variables.

The default installation directory for the Extensible SDK. By default, this
directory is based on the DI STRO variable and is set in the
ropulate sdk base class as follows:

SDKEXTPATH ??= "~/${@d.getVar('DISTRO')}_sdk"

For the default distribution "poky", the SDKEXTPATH is set to
"poky_sdk".

For information on how to change this default directory, see the "Changing
the Default SDK Installation Directory" section in the Yocto Project
Application Development and the Extensible Software Development Kit
(eSDK) manual.

Equivalent to IMAGE FEATURES. However, this variable applies to
the SDK generated from an image using the following command:

$ bitbake -c populate_sdk imagename

The machine for which the SDK is built. In other words, the SDK is built
such that it runs on the target you specify with the SDKMACHINE
value. The value points to a corresponding . conf£ file under
conf/machine-sdk/.

You can use "i686" and "x86_64" as possible values for this variable. The
variable defaults to "i686" and is set in the local.conf file in the Build
Directory.

SDKMACHINE ?= "i686"

Note
You cannot set the SDKMACHINE variable in

your distribution configuration file. If you do, the
configuration will not take affect.

Defines the path offered to the user for installation of the SDK that is
generated by the OpenEmbedded build system. The path appears as the
default location for installing the SDK when you run the SDK's installation
script. You can override the offered path when you run the script.

The full path to the sysroot used for cross-compilation within an SDK as it
will be when installed into the default SDKPATH.

The section in which packages should be categorized. Package
management utilities can make use of this variable.

Specifies the optimization flags passed to the C compiler when building for
the target. The flags are passed through the default value of the
TARGET CFLAGS variable.

The SELECTED OPTIMIZATION variable takes the value of
FULL _OPTIMIZATION unless DEBUG _BUILD = "1". If that is
the case, the value of DEBUG _OPTIMIZATION is used.

Defines a serial console (TTY) to enable using getty. Provide a value that
specifies the baud rate followed by the TTY device name separated by a
space. You cannot specify more than one TTY device:

SERIAL_CONSOLE = "115200 ttysSe"

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 203/235

http://www.yoctoproject.org/docs/3.1/sdk-manual/sdk-manual.html#sdk-changing-the-default-sdk-installation-directory
https://en.wikipedia.org/wiki/Getty_(Unix)

3/4/2020

SERIAL_CONSOLESS

SERIAL_CONSOLES_CHECKY

SIGGEN_EXCLUDE_SAFE_RECIPE_DEPSS

SIGGEN_EXCLUDERECIPES_ABISAFES|

SITEINFO_BITS|

Yocto Project Reference Manual

Note
The SERTIAL CONSOLE variable is

deprecated. Please use the
SERIAL_CONSOLES variable.

Defines a serial console (TTY) to enable using getty. Provide a value that
specifies the baud rate followed by the TTY device name separated by a
semicolon. Use spaces to separate multiple devices:

SERIAL_CONSOLES = "115200;ttySe 115200;ttysS1"

Specifies serial consoles, which must be listed in

SERIAL CONSOLES, to check against /proc/console
before enabling them using getty. This variable allows aliasing in the
format: <device>:<alias>. If a device was listed as "sclp_line0" in
/dev/ and "ttyS0" was listed in /proc/console, you would do
the following:

SERIAL_CONSOLES_CHECK = "slcp_line@:ttySe"

This variable is currently only supported with SysVinit (i.e. not with
systemd).

A list of recipe dependencies that should not be used to determine
signatures of tasks from one recipe when they depend on tasks from
another recipe. For example:

SIGGEN_EXCLUDE_SAFE_RECIPE_DEPS += "intone->mplayer2"

In the previous example, intone depends onmplayer?2.

You can use the special token " * " on the left-hand side of the
dependency to match all recipes except the one on the right-hand side.
Here is an example:

SIGGEN_EXCLUDE_SAFE_RECIPE_DEPS += "*->quilt-native"

In the previous example, all recipes except quilt—-native ignore
task signatures from the quilt—-native recipe when determining
their task signatures.

Use of this variable is one mechanism to remove dependencies that affect
task signatures and thus force rebuilds when a recipe changes.

Caution

If you add an inappropriate dependency for a
recipe relationship, the software might break
during runtime if the interface of the second

recipe was changed after the first recipe had
been built.

A list of recipes that are completely stable and will never change. The ABIL
for the recipes in the list are presented by output from the tasks run to
build the recipe. Use of this variable is one way to remove dependencies
from one recipe on another that affect task signatures and thus force
rebuilds when the recipe changes.

Caution

If you add an inappropriate variable to this list,
the software might break at runtime if the
interface of the recipe was changed after the
other had been built.

Specifies the number of bits for the target system CPU. The value should
be either "32" or "64".

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 204/235

https://en.wikipedia.org/wiki/Getty_(Unix)

3/4/2020
SITEINFO_ENDIANNESSY|

SKIP_FILEDEPSY|

SOC_FAMILY|

SOLIBSY|

SOLIBSDEVY]

SOURCE_MIRROR_FETCH¢|

SOURCE_MIRROR_URLY|

Yocto Project Reference Manual

Specifies the endian byte order of the target system. The value should be
either "le" for little-endian or "be" for big-endian.

Enables removal of all files from the "Provides" section of an RPM
package. Removal of these files is required for packages containing
prebuilt binaries and libraries such as 1ibstdc++and glibc.

To enable file removal, set the variable to "1" in your
conf/local.conf configuration file in your: Build Directory.

SKIP_FILEDEPS = "1"

Groups together machines based upon the same family of SOC (System
On Chip). You typically set this variable in a common . 1nc file that you
include in the configuration files of all the machines.

Note

You must include
conf/machine/include/soc-

family. inc for this variable to appear in
MACHINEOVERRIDES.

Defines the suffix for shared libraries used on the target platform. By
default, this suffix is ".so0.*" for all Linux-based systems and is defined in
themeta/conf/bitbake.conf configuration file.

You will see this variable referenced in the default values of
FILESi$ {PN}.

Defines the suffix for the development symbolic link (symlink) for shared
libraries on the target platform. By default, this suffix is ".so" for Linux-
based systems and is defined in the
meta/conf/bitbake.conf configuration file.

You will see this variable referenced in the default values of
FILES_$ {PN}-dev.

When you are fetching files to create a mirror of sources (i.e. creating a
source mirror), setting SOURCE MIRROR FETCH to "1"in your
local.conf configuration file ensures the source for all recipes are
fetched regardless of whether or not a recipe is compatible with the
configuration. A recipe is considered incompatible with the currently
configured machine when either or both the

COMPATIBLE MACHTINE variable and COMPATIBLE HOST
variables specify cgmpatibility with a machine other than that of the
current machine or host.

Warning
Do not set the SOURCE_MIRROR FETCH

variable unless you are creating a source mirror.
In other words, do not set the variable during a
normal build.

Defines your own PREMTRRORS from which to first fetch source
before attempting to fetch from the upstream specified in SRC_ URT.

To use this variable, you must globally inherit the own-mirrors
class and then provide the URL to your mirrors. Here is the general
syntax:

INHERIT += "own-mirrors"
SOURCE_MIRROR_URL = "http://example.com/my_source_mirror"

Note

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 205/235

3/4/2020

SPDXLICENSEMAP|

SPECIAL_PKGSUFFIX|

SPL_BINARYY|

SRC_URIY|

Yocto Project Reference Manual

You can specify only a single URL in
SOURCE_MIRROR_URL.

Maps commonly used license names to their SPDX counterparts found in
meta/files/common-licenses/. For the default
SPDXLICENSEMAP mappings, see the
meta/conf/licenses.conf file.

For additional information, see the LTICENSE variable.

A list of prefixes for PN used by the OpenEmbedded build system to
create variants of recipes or packages. The list specifies the prefixes to
strip off during certain circumstances such as the generation of the BPN
variable.

The file type for the Secondary Program Loader (SPL). Some devices use
an SPL from which to boot (e.g. the BeagleBone development board). For
such cases, you can declare the file type of the SPL binary in the U—
boot . inc include file, which is used in the U-Boot recipe.

The SPL file type is set to "null" by default in the U=boot . inc file as
follows:

Some versions of u-boot build an SPL (Second Program Loader) i
should be packaged along with the u-boot binary as well as ple
deploy directory. For those versions they can set the followi
to allow packaging the SPL.

SPL_BINARY ?= ""

SPL_BINARYNAME ?= "${@os.path.basename(d.getVar("SPL_BINARY"))}"
SPL_IMAGE ?= "${SPL_BINARYNAME }-${MACHINE}-${PV}-${PR}"
SPL_SYMLINK ?= "${SPL_BINARYNAME }-${MACHINE}"

| »

The SPL._BINARY variable helps form various SPL_* variables used
by the OpenEmbedded build system.

See the BeagleBone machine configuration example in the "Creating_a
new BSP Layer Using_ the bitbake—-layers Script" section in the
Yocto Project Board Support Package Developer's Guide for additional
information.

The list of source files - local or remote. This variable tells the
OpenEmbedded build system which bits to pull in for the build and how to
pull them in. For example, if the recipe or append file only needs to fetch
a tarball from the Internet, the recipe or append file uses a single

SRC URTI entry. On the other hand, if the recipe or append file needs
to fetch a tarball, apply two patches, and include a custom file, the recipe
or append file would include four instances of the variable.

The following list explains the available URI protocols. URI protocols are
highly dependent on particular BitBake Fetcher submodules. Depending on
the fetcher BitBake uses, various URL parameters are employed. For
specifics on the supported Fetchers, see the "Fetchers" section in the
BitBake User Manual.

o file:// - Fetches files, which are usually files shipped with the
Metadata, from the local machine (e.g. patch files). The path is relative
to the ETILESPATH variable. Thus, the build system searches, in
order, from the following directories, which are assumed to be a
subdirectories of the directory in which the recipe file (. blb) or append

file (. bbappend) resides:

o S{BPN} - The base recipe name without any special suffix or
version numbers.

o S{BP}-S$S{BPN}-${PV}. The base recipe name and version
but without any special package name suffix.

o files - Files within a directory, which is named £iles and is also
alongside the recipe or append file.

Note

If you want the build system to pick up files
specified through a SRC_URT statement
from your append file, you need to be sure to

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 206/235

http://www.yoctoproject.org/docs/3.1/bsp-guide/bsp-guide.html#creating-a-new-bsp-layer-using-the-bitbake-layers-script
http://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html#bb-fetchers
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#patching-dev-environment

3/4/2020

Yocto Project Reference Manual

extend the FILESPATH variable by also
using the FILESEXTRAPATHS variable
from within your append file.

bzr://- Fetches files from a Bazaar revision control repository.
git :// - Fetches files from a Git revision control repository.

osc:// - Fetches files from an OSC (OpenSUSE Build service)
revision control repository.

repo: // - Fetches files from a repo (Git) repository.
ccrc: // - Fetches files from a ClearCase repository.
http: // - Fetches files from the Internet using ht tp.
https: // - Fetches files from the Internet using https.
ftp: // - Fetches files from the Internet using ftp.

cvs :// - Fetches files from a CVS revision control repository.

hg://- Fetches files from a Mercurial (h.g) revision control
repository.

p4 :// - Fetches files from a Perforce (p4) revision control
repository.

ssh: //- Fetches files from a secure shell.

svn ://- Fetches files from a Subversion (SVnN) revision control
repository.

npm: // - Fetches JavaScript modules from a registry.

Standard and recipe-specific options for SRC_URT exist. Here are
standard options:

apply - Whether to apply the patch or not. The default action is to
apply the patch.

striplevel - Which striplevel to use when applying the patch.
The default level is 1.

patchdir - Specifies the directory in which the patch should be
applied. The defaultis ${S}.

Here are options specific to recipes building code from a revision control
system:

mindate - Apply the patch only if SRCDATE is equal to or
greater than mindate.

maxdate - Apply the patch only if SRCDATE is not later than
maxdate.

minrev - Apply the patch only if SRCREV is equal to or greater
thanminrev.

maxrev - Apply the patch only if SRCREV is not later than
maxrev.

rev - Apply the patch only if SRCREV is equal to rev.

notrev - Apply the patch only if SRCREV is not equal to rev.

Here are some additional options worth mentioning:

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

unpack - Controls whether or not to unpack the file if it is an
archive. The default action is to unpack the file.

destsuffix - Places the file (or extracts its contents) into the
specified subdirectory of WORKDTR when the Git fetcher is used.

subdir - Places the file (or extracts its contents) into the specified
subdirectory of WORKDIR when the local (f1le: //) fetcher is
used.

localdir - Places the file (or extracts its contents) into the
specified subdirectory of WORKDIR when the CVS fetcher is used.

subpath - Limits the checkout to a specific subpath of the tree
when using the Git fetcher is used.

207/235

3/4/2020

SRC_URI_OVERRIDES_PACKAGE_ARCHY

SRCDATES|

SRCPV|

SRCREVY|

SSTATE_DIRY|

SSTATE_MIRROR_ALLOW_NETWORKY|

SSTATE_MIRRORSS|

Yocto Project Reference Manual

e name - Specifies a name to be used for association with SRC_URT

checksums when you have more than one file specified in SRC_URT.

« downloadfilename - Specifies the filename used when storing

the downloaded file.

By default, the OpenEmbedded build system automatically detects
whether SRC__URT contains files that are machine-specific. If so, the
build system automatically changes PACKAGE ARCH. Setting this
variable to "0" disables this behavior.

The date of the source code used to build the package. This variable
applies only if the source was fetched from a Source Code Manager
(SCM).

Returns the version string of the current package. This string is used to
help define the value of PV.

The SRCPV variable is defined in the
meta/conf/bitbake.conf configuration file in the Source
Directory as follows:

SRCPV = "${@bb.fetch2.get_srcrev(d)}"

Recipes that need to define PV do so with the help of the SRCPV. For
example, the 0£ono recipe (0fono_git.bb) located in
meta/recipes-connectivity in the Source Directory
defines PV as follows:

PV = "@.12-git${SRCPV}"

The revision of the source code used to build the package. This variable
applies to Subversion, Git, Mercurial, and Bazaar only. Note that if you
want to build a fixed revision and you want to avoid performing a query
on the remote repository every time BitBake parses your recipe, you
should specify a SRCREV that is a full revision identifier and not just a
tag.

Note

For information on limitations when inheriting
the latest revision of software using SRCREV,
see the AUTOREV variable description and the

"Automatically Incrementing_a Binary Package
Revision Number" section, which is in the Yocto
Project Development Tasks Manual.

The directory for the shared state cache.

If set to "1", allows fetches from mirrors that are specified in

SSTATE MIRRORS to work even when fetching from the network is
disabled by_setting BB NO NETWORK to "1". Using the

SSTATE MIRROR ALLOW NETWORK variable is useful if you
have set SgTATEiMTRRORS_to point to an internal server for your
shared state cache, but you want to disable any other fetching from the
network.

Configures the OpenEmbedded build system to search other mirror
locations for prebuilt cache data objects before building out the data. This
variable works like fetcher MIRRORS and PREMTRRORS and points
to the cache locations to check for the shared state (sstate) objects.

You can specify a filesystem directory or a remote URL such as HTTP or
FTP. The locations you specify need to contain the shared state cache
(sstate-cache) results from previous builds. The sstate-cache you point to
can also be from builds on other machines.

When pointing to sstate build artifacts on another machine that uses a
different GCC version for native builds, you must configure

SSTATE MIRROR with a regular expression that maps local search
paths to server paths. The paths need to take into account
NATIVELSBSTRING set by the uninative class. For example,

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

208/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#automatically-incrementing-a-binary-package-revision-number

3/4/2020

SSTATE_SCAN_FILES|

STAGING_BASE_LIBDIR_NATIVE

STAGING_BASELIBDIRS|

STAGING_BINDIRY|

STAGING_BINDIR_CROSSY|

STAGING_BINDIR_NATIVE(|

STAGING_DATADIRY|

STAGING_DATADIR_NATIVES|

STAGING_DIRS|

Yocto Project Reference Manual

the following maps the local search path universal-4. 9 to the
server-provided path server_url_sstate_path:

SSTATE_MIRRORS ?= file://universal-4.9/(.*) http://server_url_ss
< >

If a mirror uses the same structure as SSTATE DTR, you need to add
"PATH" at the end as shown in the examples below. The build system
substitutes the correct path within the directory structure.

SSTATE_MIRRORS ?= "\
file://.* http://someserver.tld/share/sstate/PATH;downloadfilenz
file://.* file:///some-local-dir/sstate/PATH"

Controls the list of files the OpenEmbedded build system scans for
hardcoded installation paths. The variable uses a space-separated list of
filenames (not paths) with standard wildcard characters allowed.

During a build, the OpenEmbedded build system creates a shared state
(sstate) object during the first stage of preparing the sysroots. That object
is scanned for hardcoded paths for original installation locations. The list
of files that are scanned for paths is controlled by the

SSTATE SCAN FILES variable. Typically, recipes add files they
want to be scanned to the value of SSTATE SCAN FILES rather
than the variable being comprehensively set. The sstate class
specifies the default list of files.

For details on the process, see the staging‘ class.

Specifies the path to the /1 1b subdirectory of the sysroot directory for
the build host.

Specifies the path to the /1 1b subdirectory of the sysroot directory for
the target for which the current recipe is being built
(STAGING _DIR HOST).

Specifies the path to the /usr/bin subdirectory of the sysroot
directory for the target for which the current recipe is being built
(STAGING DIR HOST).

Specifies the path to the directory containing binary configuration scripts.
These scripts provide configuration information for other software that
wants to make use of libraries or include files provided by the software
associated with the script.

Note

This style of build configuration has been largely
replaced by pkg—config. Consequently, if
pkg-config is supported by the library to
which you are linking, it is recommended you
use pkg—config instead of a provided
configuration script.

Specifies the path to the /usr/bin subdirectory of the sysroot
directory for the build host.

Specifies the path to the /usr/share subdirectory of the sysroot
directory for the target for which the current recipe is being built

(STAGING _DIR HOST).

Specifies the path to the /usr/share subdirectory of the sysroot
directory for the build host.

Helps construct the recipe-sysroots directory, which is used
during packaging.

For information on how staging for recipe-specific sysroots occurs, see the
d;Lprulate_sys root task, the "Sharing_Files Between

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

209/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#new-sharing-files-between-recipes

3/4/2020

STAGING_DIR_HOSTY|

STAGING_DIR_NATIVES|

STAGING_DIR_TARGETY|

Yocto Project Reference Manual

Recipes" section in the Yocto Project Development Tasks Manual, the
"Configuration, Compilation,_and Staging" section in the Yocto Project
Overview and Concepts Manual, and the SYSROOT DIRS variable.

Note

Recipes should never write files directly under
the STAGING_DIR directory because the
OpenEmbedded build system manages the
directory automatically. Instead, files should be
installed to $ { D} within your recipe's
do_install task and then the

OpenEmbedded build system will stage a subset
of those files into the sysroot.

Specifies the path to the sysroot directory for the system on which the
component is built to run (the system that hosts the component). For
most recipes, this sysroot is the one in which that recipe's
do_populate sysroot task copies files. Exceptions include —
native recipes, where the do_populate sysroot task
instead uses STAGING _DIR_NATTIVE. Depending on the type of
recipe and the build target, STAGING DIR HOST can have the
following values:

e For recipes building for the target machine, the value is
"${STAGING DIR}/${MACHINE}".

e For native recipes building for the build host, the value is empty given
the assumption that when building for the build host, the build host's
own directories should be used.

Note

—native recipes are not installed into
host paths like such as /usr. Rather,
these recipes are installed into
STAGING DIR NATIVE. When
compiling —native recipes, standard
build environment variables such as
CPPFLAGS and CFLAGS are set up so
that both host paths and

STAGING DIR NATIVE are
searched for libraries and headers using, for
example, GCC's —1 system option.

Thus, the emphasis is that the
STAGING DIR™ variables should be
viewed as input variables by tasks such as
do configure,do compile,
anddo_install. Having the real
system root correspond to
STAGING DIR HOST makes
conceptual sense for —native recipes,
as they make use of host headers and
libraries.

Specifies the path to the sysroot directory used when building components
that run on the build host itself.

Specifies the path to the sysroot used for the system for which the
component generates code. For components that do not generate code,
which is the majority, STAGING DIR TARGET is set to match
STAGING DIR HOST.

Some recipes build binaries that can run on the target system but those
binaries in turn generate code for another different system (e.g. cross-
canadian recipes). Using terminology from GNU, the primary system is
referred to as the "HOST" and the secondary, or different, system is
referred to as the "TARGET". Thus, the binaries run on the "HOST" system
and generate binaries for the "TARGET" system. The
STAGING DIR HOST variable points to the sysroot used for the

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

210/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#new-sharing-files-between-recipes
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#configuration-compilation-and-staging-dev-environment

3/4/2020

STAGING_ETCDIR_NATIVE(|

STAGING_EXECPREFIXDIRY|

STAGING_INCDIRY|

STAGING_INCDIR_NATIVES|

STAGING_KERNEL_BUILDDIRY]|

STAGING_KERNEL_DIRS|

STAGING_LIBDIRY|

STAGING_LIBDIR_NATIVES|

STAMPY|

STAMPS_DIRY|

STRIPY

SUMMARY(|

SVNDIRS

SYSLINUX_DEFAULT_CONSOLES|

Yocto Project Reference Manual

"HOST" system, while STAGING DIR TARGET points to the
sysroot used for the "TARGET" system.

Specifies the path to the /etc subdirectory of the sysroot directory for
the build host.

Specifies the path to the /ST subdirectory of the sysroot directory for
the target for which the current recipe is being built
(STAGING_DIR_HOST).

Specifies the path to the /usr/include subdirectory of the sysroot
directory for the target for which the current recipe being built
(STAGING DIR HOST).

Specifies the path to the /usr/include subdirectory of the sysroot
directory for the build host.

Points to the directory containing the kernel build artifacts. Recipes
building software that needs to access kernel build artifacts (e.g.
systemtap-uprobes) can look in the directory specified with the
STAGING KERNEL BUILDDIR variable to find these artifacts
after the kernel has been built.

The directory with kernel headers that are required to build out-of-tree
modules.

Specifies the path to the /usr/lib subdirectory of the sysroot
directory for the target for which the current recipe is being built

(STAGING DIR HOST).

Specifies the path to the /usr/11b subdirectory of the sysroot
directory for the build host.

Specifies the base path used to create recipe stamp files. The path to an
actual stamp file is constructed by evaluating this string and then
appending additional information. Currently, the default assignment for
STAMP as set inthemeta/conf/bitbake.conf fileis:

STAMP = "${STAMPS_DIR}/${MULTIMACH_TARGET_SYS}/${PN}/${EXTENDPE}
< »

For information on how BitBake uses stamp files to determine if a task
should be rerun, see the "Stamp Files and the Rerunning_of Tasks" section
in the Yocto Project Overview and Concepts Manual.

See STAMPS DIR, MULTIMACH TARGET SYS, PN,
EXTENDPE, PV, and PR for related variable information.

Specifies the base directory in which the OpenEmbedded build system
places stamps. The default directory is $ { TMPDIR} /stamps.

The minimal command and arguments to run Strip, which is used to
strip symbols.

The short (72 characters or less) summary of the binary package for
packaging systems such as 0pkg, rpm, or dpkg. By default,
SUMMARY is used to define the DESCRTPTTON variable if
DESCRIPTION is not set in the recipe.

The directory in which files checked out of a Subversion system are
stored.

Specifies the kernel boot default console. If you want to use a console
other than the default, set this variable in your recipe as follows where "X"
is the console number you want to use:

SYSLINUX_DEFAULT_CONSOLE = "console=ttyX"

The §yslinux class initially sets this variable to null but then checks
for a value later.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

211/235

http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#stamp-files-and-the-rerunning-of-tasks

3/4/2020
SYSLINUX_OPTS(|

SYSLINUX_SERIALS|

SYSLINUX_SPLASHY|

SYSLINUX_SERIAL_TTYY|

SYSROOT_DESTDIRY|

SYSROOT_DIRSS

SYSROOT_DIRS_BLACKLISTY|

SYSROOT_DIRS_NATIVES|

Yocto Project Reference Manual

Lists additional options to add to the syslinux file. You need to set this
variable in your recipe. If you want to list multiple options, separate the
options with a semicolon character (;).

The sys1inux class uses this variable to create a set of options.

Specifies the alternate serial port or turns it off. To turn off serial, set this
variable to an empty string in your recipe. The variable's default value is
set in the sy s1inux class as follows:

SYSLINUX_SERIAL ?= "@ 115200"
The class checks for and uses the variable as needed.

An . LSS file used as the background for the VGA boot menu when you
use the boot menu. You need to set this variable in your recipe.

The sys1inux class checks for this variable and if found, the
OpenEmbedded build system installs the splash screen.

Specifies the alternate console=tty... kernel boot argument. The variable's
default value is set in the sys1inux class as follows:

SYSLINUX_SERIAL_TTY ?= "console=ttySe,115200"
The class checks for and uses the variable as needed.

Points to the temporary directory under the work directory (default
"S{WORKDIR}/sysroot—destdir") where the files
populated into the sysroot are assembled during the
do_populate sysroot task.

Directories that are staged into the sysroot by the
do_populate sysroot task. By default, the following
directories are staged:

SYSROOT_DIRS = " \
${includedir} \
${1libdir} \
${base_libdir} \
${nonarch_base_libdir} \
${datadir} \

Directories that are not staged into the sysroot by the

do _populate sysroot task. You can use this variable to
exclude certain subdirectories of directories listed in SYSROOT DIRS
from staging. By default, the following directories are not staged:

SYSROOT_DIRS_BLACKLIST = " \
${mandir} \
${docdir} \
${infodir} \
${datadir}/locale \
${datadir}/applications \
${datadir}/fonts \
${datadir}/pixmaps \

Extra directories staged into the sysroot by the
do_populate sysrooft task for -native recipes, in
addition to those specified in SYSROOT DIRS. By default, the
following extra directories are staged:

SYSROOT_DIRS_NATIVE = " \
${bindir} \
${sbindir} \
${base_bindir} \
${base_sbindir} \
${libexecdir} \
${sysconfdir} \
${localstatedir} \

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 212/235

3/4/2020 Yocto Project Reference Manual

Note

Programs built by —native recipes run
directly from the sysroot
(STAGING_DIR NATIVE), which is why

additional directories containing program
executables and supporting files need to be
staged.

SYSROOT_PREPROCESS_FUNCSY|
A list of functions to execute after files are staged into the sysroot. These
functions are usually used to apply additional processing on the staged
files, or to stage additional files.

SYSTEMD_AUTO_ENABLES|
When inheriting the Sy S temd class, this variable specifies whether the
specified service in SYSTEMD SERVTICE should start automatically
or not. By default, the service is enabled to automatically start at boot
time. The default setting is in the Sy stemd class as follows:

SYSTEMD_AUTO_ENABLE ??= "enable"

You can disable the service by setting the variable to "disable".

SYSTEMD_BOOT_CFGY|

When EF'T PROVTIDER is set to "systemd-boot", the
SYSTEMD__BOOT_CFG variable specifies the configuration file that
should be used. By default, the systemd-boot class sets the
SYSTEMD BOOT CFG as follows:

SYSTEMD_BOOT_CFG ?= "${S}/loader.conf"

For information on Systemd-boot, see the Systemd-boot documentation.

SYSTEMD_BOOT_ENTRIESY
When EF'T PROVIDER is set to "systemd-boot", the
SYSTEMD BOOT ENTRIES variable specifies a list of entry files
(* . conf) to install that contain one boot entry per file. By default, the
systemd-boot class sets the SYSTEMD BOOT ENTRIES
as follows:

SYSTEMD_BOOT_ENTRIES ?= ""

For information on Systemd-boot, see the Systemd-boot documentation.

SYSTEMD_BOOT_TIMEOUTY
When EF'T PROVIDER is set to "systemd-boot", the
SYSTEMD BOOT TIMEOUT variable specifies the boot menu
timeout in seconds. By default, the sSystemd—-boot class sets the
SYSTEMD BOOT TIMEOUT as follows:

SYSTEMD_BOOT_TIMEOUT ?= "10"

For information on Systemd-boot, see the Systemd-boot documentation.

SYSTEMD_PACKAGES|
When inheriting the sy stemd class, this variable locates the systemd
unit files when they are not found in the main recipe's package. By
default, the SYSTEMD PACKAGES variable is set such that the
systemd unit files are assumed to reside in the recipes main package:

SYSTEMD_PACKAGES ?= "${PN}"

If these unit files are not in this recipe's main package, you need to use
SYSTEMD PACKAGES to list the package or packages in which the
build system can find the systemd unit files.

SYSTEMD_SERVICE
When inheriting the sy stemd class, this variable specifies the systemd
service name for a package.

When you specify this file in your recipe, use a package name override to
indicate the package to which the value applies. Here is an example from
the connman recipe:

SYSTEMD_SERVICE_${PN} = "connman.service"

SYSVINIT_ENABLED_GETTYS|

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 213/235

http://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
http://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
http://www.freedesktop.org/wiki/Software/systemd/systemd-boot/

3/4/2020 Yocto Project Reference Manual

When using SysVinit, specifies a space-separated list of the virtual
terminals that should run a getty (allowing login), assuming USE_VT is
not set to "0".

The default value for SYSVINIT ENABLED GETTYS is"1" (i.e.
only run a getty on the first virtual terminal).

T
This variable points to a directory were BitBake places temporary files,
which consist mostly of task logs and scripts, when building a particular
recipe. The variable is typically set as follows:

T = "${WORKDIR}/temp"

The WORKDTIR is the directory into which BitBake unpacks and builds
the recipe. The default bitbake.conf file sets this variable.

The T variable is not to be confused with the TMPDTIR variable, which
points to the root of the directory tree where BitBake places the output of
an entire build.

TARGET_ARCHY
The target machine's architecture. The OpenEmbedded build system
supports many architectures. Here is an example list of architectures
supported. This list is by no means complete as the architecture is
configurable:

arm
i586
x86_64
powerpc
powerpc64
mips
mipsel

For additional information on machine architectures, see the
TUNE_ARCH variable.

TARGET_AS_ARCHY
Specifies architecture-specific assembler flags for the target system.
TARGET AS ARCH is initialized from TUNE_ASARGS by default
in the BitBake configuration file (neta/conf/bitbake.conf):

TARGET_AS_ARCH = "${TUNE_ASARGS}"

TARGET_CC_ARCHY|
Specifies architecture-specific C compiler flags for the target system.
TARGET CC_ARCH is initialized from TUNE_CCARGS by default.

Note
It is a common workaround to append
LDFLAGS to TARGET_CC_ARCH in

recipes that build software for the target that
would not otherwise respect the exported

LDFLAGS variable.

TARGET_CC_KERNEL_ARCHY|
This is a specific kernel compiler flag for a CPU or Application Binary
Interface (ABI) tune. The flag is used rarely and only for cases where a
userspace TUNE CCARGS is not compatible with the kernel
compilation. The TTZ—\RGET_CC_KERNEL_ARCH variable allows the
kernel (and associated modules) to use a different configuration. See the
meta/conf/machine/include/arm/feature-
arm—-thumb. inc file in the Source Directory for an example.

TARGET_CFLAGSY
Specifies the flags to pass to the C compiler when building for the target.
When building in the target context, CE'LLAGS is set to the value of this
variable by default.

Additionally, the SDK's environment setup script sets the CELAGS
variable in the environment to the TARGET CFLAGS value so that
executables built using the SDK also have the flags applied.

TARGET_CPPFLAGSY|

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 214/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#new-recipe-enabling-system-services
http://en.wikipedia.org/wiki/Getty_%28Unix%29

3/4/2020

TARGET_CXXFLAGSS

TARGET_FPUY|

TARGET_LD_ARCH¢

TARGET_LDFLAGSS

TARGET_OS1

TARGET_PREFIX|

TARGET_SYSS

Yocto Project Reference Manual

Specifies the flags to pass to the C pre-processor (i.e. to both the C and
the C++ compilers) when building for the target. When building in the
target context, CPPFT.AGS is set to the value of this variable by
default.

Additionally, the SDK's environment setup script sets the CPPFLAGS
variable in the environment to the TARGET CPPFLAGS value so
that executables built using the SDK also have the flags applied.

Specifies the flags to pass to the C++ compiler when building for the
target. When building in the target context, CXXFLAGS is set to the
value of this variable by default.

Additionally, the SDK's environment setup script sets the CXXFLAGS
variable in the environment to the TARGET CXXFLAGS value so
that executables built using the SDK also have the flags applied.

Specifies the method for handling FPU code. For FPU-less targets, which
include most ARM CPUs, the variable must be set to "soft". If not, the
kernel emulation gets used, which results in a performance penalty.

Specifies architecture-specific linker flags for the target system.
TARGET LD _ ARCH is initialized from TUNE_LDARGS by default
in the BitBake configuration file (meta/conf/bitbake.conf):

TARGET_LD_ARCH = "${TUNE_LDARGS}"

Specifies the flags to pass to the linker when building for the target. When
building in the target context, LDF'LLAGS is set to the value of this
variable by default.

Additionally, the SDK's environment setup script sets the LDFTLAGS
variable in the environment to the TARGET LDFLAGS value so that
executables built using the SDK also have the flags applied.

Specifies the target's operating system. The variable can be set to "linux"
for glibc-based systems (GNU C Library) and to "linux-musl" for musl libc.
For ARM/EABI targets, "linux-gnueabi" and "linux-musleabi" possible
values exist.

Specifies the prefix used for the toolchain binary target tools.

Depending on the type of recipe and the build target,
TARGET PREFIX s set as follows:

e For recipes building for the target machine, the value is
"${TARGET SYS}-".

e For native recipes, the build system sets the variable to the value of
BUILD_PREFIX.

o For native SDK recipes (nat ivesdk), the build system sets the
variable to the value of SDK PREFIX.

Specifies the system, including the architecture and the operating system,
for which the build is occurring in the context of the current recipe.

The OpenEmbedded build system automatically sets this variable based on
TARGET_ARCH, TARGET_VENDOR, and TARGET_OS
variables.

Note

You do not need to set the TARGET SYS
variable yourself.

Consider these two examples:

e Given a native recipe on a 32-bit, x86 machine running Linux, the
value is "i686-linux".

e Given a recipe being built for a little-endian, MIPS target running Linux,
the value might be "mipsel-linux".

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 215/235

3/4/2020
TARGET_VENDORY|

TCLIBCY

TCLIBCAPPENDY|

TCMODEY

TEST_EXPORT_DIRS

TEST_EXPORT_ONLYY

TEST_LOG_DIRY|

Yocto Project Reference Manual

Specifies the name of the target vendor.

Specifies the GNU standard C library (1 11oC) variant to use during the
build process. This variable replaces POKYLIBC, which is no longer
supported.

You can select "glibc", "musl", "newlib", or "baremetal"

Specifies a suffix to be appended onto the TMPDTIR value. The suffix
identifies the 1 1l C variant for building. When you are building for
multiple variants with the same Build Directory, this mechanism ensures
that output for different 1 110C variants is kept separate to avoid
potential conflicts.

Inthe defaultsetup.conf file, the default value of
TCLIBCAPPEND is "-${TCLIBC}". However, distros such as poky,
which normally only support one 11l variant, set TCLIBCAPPEND
to "" in their distro configuration file resulting in no suffix being applied.

Specifies the toolchain selector. TCMODE controls the characteristics of
the generated packages and images by telling the OpenEmbedded build
system which toolchain profile to use. By default, the OpenEmbedded
build system builds its own internal toolchain. The variable's default value
is "default", which uses that internal toolchain.

Note

If TCMODE is set to a value other than

"default", then it is your responsibility to ensure
that the toolchain is compatible with the default
toolchain. Using older or newer versions of these
components might cause build problems. See
the Release Notes for the Yocto Project release
for the specific components with which the
toolchain must be compatible. To access the
Release Notes, go to the Downloads page on the
Yocto Project website and click on the "RELEASE
INFORMATION" link for the appropriate release.

The TCMODE variable is similar to TCL TBC, which controls the variant
of the GNU standard C library (1 1 C) used during the build process:
glibcormusl.

With additional layers, it is possible to use a pre-compiled external
toolchain. One example is the Sourcery G++ Toolchain. The support for
this toolchain resides in the separate Mentor Graphics® meta—
sourcery layer at http://github.com/MentorEmbedded/meta-
sourcery/.

The layer's README file contains information on how to use the
Sourcery G++ Toolchain as an external toolchain. In summary, you must
be sure to add the layer to your bblayers.conf file in front of the
meta layer and then set the EXTERNAL TOOLCHAIN variable in
your Local. conf file to the location in which you installed the
toolchain.

The fundamentals used for this example apply to any external toolchain.
You can use meta—-sourcery as a template for adding support for
other external toolchains.

The location the OpenEmbedded build system uses to export tests when
the TEST EXPORT ONLY variable is set to "1".

The TEST EXPORT DIR variable defaults to
"S{TMPDIR}/testimage/S${PN}".

Specifies to export the tests only. Set this variable to "1" if you do not
want to run the tests but you want them to be exported in a manner that
you to run them outside of the build system.

Holds the SSH log and the boot log for QEMU machines. The
TEST LOG_DIR variable defaults to
"S{WORKDIR}/testimage".

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

216/235

http://www.yoctoproject.org/software-overview/downloads/
http://github.com/MentorEmbedded/meta-sourcery/

3/4/2020

TEST_POWERCONTROL_CMD{|

TEST_POWERCONTROL_EXTRA_ARGSY|

TEST_QEMUBOOT_TIMEOUTY|

TEST_SERIALCONTROL_CMD{|

TEST_SERIALCONTROL_EXTRA_ARGS

TEST_SERVER_IPY|

TEST_TARGETY

Yocto Project Reference Manual

Note

Actual test results reside in the task log
(log.do_testimage), which is in the
S{WORKDIR} /temp/ directory.

For automated hardware testing, specifies the command to use to control
the power of the target machine under test. Typically, this command
would point to a script that performs the appropriate action (e.g.
interacting with a web-enabled power strip). The specified command
should expect to receive as the last argument "off", "on" or "cycle"
specifying to power off, on, or cycle (power off and then power on) the
device, respectively.

For automated hardware testing, specifies additional arguments to pass
through to the command specified in

TEST POWERCONTROL CMD. Setting

TEST POWERCONTROL EXTRA ARGS is optional. You can use
it if you wish, for example, to separate the machine-specific and non-
machine-specific parts of the arguments.

The time in seconds allowed for an image to boot before automated
runtime tests begin to run against an image. The default timeout period to
allow the boot process to reach the login prompt is 500 seconds. You can
specify a different value in the J1ocal.conf file.

For more information on testing images, see the "Performing_Automated
Runtime Testing" section in the Yocto Project Development Tasks Manual.

For automated hardware testing, specifies the command to use to connect
to the serial console of the target machine under test. This command
simply needs to connect to the serial console and forward that connection
to standard input and output as any normal terminal program does.

For example, to use the Picocom terminal program on serial device
/dev/ttyUSBO at 115200bps, you would set the variable as
follows:

TEST_SERIALCONTROL_CMD = "picocom /dev/ttyUSBO -b 115200"

For automated hardware testing, specifies additional arguments to pass
through to the command specified in

TEST SERTIATLCONTROIL CMD. Setting
TEST:SERIALCONTROL:EXTRAﬁARGS is optional. You can
use it if you wish, for example, to separate the machine-specific and non-
machine-specific parts of the command.

The IP address of the build machine (host machine). This IP address is
usually automatically detected. However, if detection fails, this variable
needs to be set to the IP address of the build machine (i.e. where the
build is taking place).

Note

The TEST SERVER TP variable is only

used for a small number of tests such as the
"dnf" test suite, which needs to download
packages from WORKDIR/oe-rootfs—

repo.

Specifies the target controller to use when running tests against a test
image. The default controller to use is "QemuTarget":

TEST_TARGET = "QemuTarget"
A target controller is a class that defines how an image gets deployed on a

target and how a target is started. A layer can extend the controllers by
adding a module in the layer's /1ib/oega/controllers

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

217/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#performing-automated-runtime-testing

3/4/2020 Yocto Project Reference Manual

directory and by inheriting the BaseTarget class, which is an
abstract class that cannot be used as a value of TEST TARGET.

You can provide the following arguments with TEST TARGET:

o "QemuTarget": Boots a QEMU image and runs the tests. See the
"Enabling_Runtime Tests on QEMU" section in the Yocto Project
Development Tasks Manual for more information.

o "SimpleRemoteTarget": Runs the tests on target hardware that is
already up and running. The hardware can be on the network or it can
be a device running an image on QEMU. You must also set
TEST TARGET TP when you use "SimpleRemoteTarget".

Note

This argument is defined in
meta/lib/oega/controllers/simpleremote.py.

For information on running tests on hardware, see the "Enabling_Runtime
Tests on Hardware" section in the Yocto Project Development Tasks
Manual.

TEST_TARGET_IPY|
The IP address of your hardware under test. The TEST TARGET TP

variable has no effect when TEST TARGET is set tquemu".

When you specify the IP address, you can also include a port. Here is an
example:

TEST_TARGET_IP = "192.168.1.4:2201"

Specifying a port is useful when SSH is started on a non-standard port or
in cases when your hardware under test is behind a firewall or network
that is not directly accessible from your host and you need to do port
address translation.

TEST_SUITES
An ordered list of tests (modules) to run against an image when
performing automated runtime testing.

The OpenEmbedded build system provides a core set of tests that can be
used against images.

Note

Currently, there is only support for running these
tests under QEMU.

Tests include ping, ssh, df among others. You can add your own
tests to the list of tests by appending TEST SUITES as follows:

TEST_SUITES_append = " mytest"

Alternatively, you can provide the "auto" option to have all applicable tests
run against the image.

TEST_SUITES_append = " auto"

Using this option causes the build system to automatically run tests that
are applicable to the image. Tests that are not applicable are skipped.

The order in which tests are run is important. Tests that depend on
another test must appear later in the list than the test on which they
depend. For example, if you append the list of tests with two tests
(test Aand test B)where test B isdependenton
test__A, then you must order the tests as follows:

TEST_SUITES = " test_A test_B"

For more information on testing images, see the "Performing_Automated
Runtime Testing" section in the Yocto Project Development Tasks Manual.

TESTIMAGE_AUTOY|
Automatically runs the series of automated tests for images when an
image is successfully built. Setting TESTIMAGE AUTO to "1" causes

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 218/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#qemu-image-enabling-tests
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#hardware-image-enabling-tests
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#performing-automated-runtime-testing

3/4/2020

THISDIR|

TIMEY

TMPDIRS

TOOLCHAIN_HOST_TASKY|

TOOLCHAIN_OUTPUTNAMES|

TOOLCHAIN_TARGET_TASKY|

Yocto Project Reference Manual

any image that successfully builds to automatically boot under QEMU.
Using the variable also adds in dependencies so that any SDK for which
testing is requested is automatically built first.

These tests are written in Python making use of the unittest
module, and the majority of them run commands on the target system
over SSh. You can set this variable to "1" in your Local .conf file
in the Build Directory to have the OpenEmbedded build system
automatically run these tests after an image successfully builds:

TESTIMAGE_AUTO = "1"

For more information on enabling, running, and writing these tests, see
the "Performing Automated Runtime Testing" section in the Yocto Project
Development Tasks Manual and the "testimage* .bbclass"
section.

The directory in which the file BitBake is currently parsing is located. Do
not manually set this variable.

The time the build was started. Times appear using the hour, minute, and
second (HMS) format (e.g. "140159" for one minute and fifty-nine
seconds past 1400 hours).

This variable is the base directory the OpenEmbedded build system uses
for all build output and intermediate files (other than the shared state
cache). By default, the TMPDIR variable points to tmp within the Build
Directory.

If you want to establish this directory in a location other than the default,
you can uncomment and edit the following statement in the
conf/local.conf file in the Source Directory:

#TMPDIR = "${TOPDIR}/tmp"

An example use for this scenario is to set TMPDIR to a local disk, which
does not use NFS, while having the Build Directory use NFS.

The filesystem used by TMPD IR must have standard filesystem
semantics (i.e. mixed-case files are unique, POSIX file locking, and
persistent inodes). Due to various issues with NFS and bugs in some
implementations, NFS does not meet this minimum requirement.
Consequently, TMPDIR cannot be on NFS.

This variable lists packages the OpenEmbedded build system uses when
building an SDK, which contains a cross-development environment. The
packages specified by this variable are part of the toolchain set that runs
on the SDKMACHTINE, and each package should usually have the
prefix nativesdk—. For example, consider the following command
when building an SDK:

$ bitbake -c populate_sdk imagename

In this case, a default list of packages is set in this variable, but you can
add additional packages to the list. See the "Adding_Individual Packages to
the Standard SDK" section in the Yocto Project Application Development
and the Extensible Software Development Kit (eSDK) manual for more
information.

For background information on cross-development toolchains in the Yocto
Project development environment, see the "Cross-Development Toolchain
Generation" section in the Yocto Project Overview and Concepts Manual.
For information on setting up a cross-development environment, see the
Yocto Project Application Development and the Extensible Software

Development Kit (eSDK) manual.

This variable defines the name used for the toolchain output. The
ropulate sdk base class sets the
TOOLCHAIN OUTPUTNAME variable as follows:

TOOLCHAIN_OUTPUTNAME 2= "${SDK_NAME}-toolchain-${SDK_VERSION}"

See the SDK_NAME and SDK_VERSTON variables for additional
information.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

219/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/3.1/sdk-manual/sdk-manual.html#sdk-adding-individual-packages
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#cross-development-toolchain-generation
http://www.yoctoproject.org/docs/3.1/sdk-manual/sdk-manual.html

3/4/2020 Yocto Project Reference Manual

This variable lists packages the OpenEmbedded build system uses when it
creates the target part of an SDK (i.e. the part built for the target
hardware), which includes libraries and headers. Use this variable to add
individual packages to the part of the SDK that runs on the target. See
the "Adding_Individual Packages to the Standard SDK" section in the Yocto
Project Application Development and the Extensible Software
Development Kit (eSDK) manual for more information.

For background information on cross-development toolchains in the Yocto
Project development environment, see the "Cross-Development Toolchain
Generation" section in the Yocto Project Overview and Concepts Manual.
For information on setting up a cross-development environment, see the
Yocto Project Application Development and the Extensible Software
Development Kit (eSDK) manual.

TOPDIRY|
The top-level Build Directory. BitBake automatically sets this variable

when you initialize your build environment using oe—init-build-
env.

TRANSLATED_TARGET_ARCHY
A sanitized version of TARGET ARCH. This variable is used where the

architecture is needed in a value where underscores are not allowed, for
example within package filenames. In this case, dash characters replace
any underscore characters used in TARGET ARCH.

Do not edit this variable.

TUNE_ARCHY
The GNU canonical architecture for a specific architecture (i.e. arm,
armeb, mips, mips64, and so forth). BitBake uses this value to
setup configuration.

TUNE ARCH definitions are specific to a given architecture. The
definitions can be a single static definition, or can be dynamically
adjusted. You can see details for a given CPU family by looking at the
architecture's README file. For example, the
meta/conf/machine/include/mips/README file in
the Source Directory provides information for TUNE ARCH specific to
the mips architecture. N

TUNE ARCH is tied closely to TARGET ARCH, which defines the
target machine's architecture. The BitBake configuration file
(meta/conf/bitbake.conf)sets TARGET ARCH as
follows:

TARGET_ARCH = "${TUNE_ARCH}"

The following list, which is by no means complete since architectures are
configurable, shows supported machine architectures:

arm
i586
x86_64
powerpc
powerpc64
mips
mipsel

TUNE_ASARGSY|
Specifies architecture-specific assembler flags for the target system. The

set of flags is based on the selected tune features. TUNE ASARGS is
set using the tune include files, which are typically under
meta/conf/machine/include/ and are influenced through
TUNE FEATURES. For example, the
meta/conf/machine/include/x86/arch-

x86 . 1nc file defines the flags for the x86 architecture as follows:

TUNE_ASARGS += "${@bb.utils.contains("TUNE_FEATURES", "mx32", "-

| »

Note

Board Support Packages (BSPs) select the tune.
The selected tune, in turn, affects the tune
variables themselves (i.e. the tune can supply its
own set of flags).

TUNE_CCARGS]|

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 220/235

http://www.yoctoproject.org/docs/3.1/sdk-manual/sdk-manual.html#sdk-adding-individual-packages
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#cross-development-toolchain-generation
http://www.yoctoproject.org/docs/3.1/sdk-manual/sdk-manual.html

3/4/2020

TUNE_LDARGS|

TUNE_FEATURESY|

TUNE_PKGARCHY|

TUNEABIY|

TUNEABI_OVERRIDES

Yocto Project Reference Manual

Specifies architecture-specific C compiler flags for the target system. The
set of flags is based on the selected tune features. TUNE CCARGS is
set using the tune include files, which are typically under n
meta/conf/machine/include/ and are influenced through
TUNE_FEATURES.

Note

Board Support Packages (BSPs) select the tune.
The selected tune, in turn, affects the tune
variables themselves (i.e. the tune can supply its
own set of flags).

Specifies architecture-specific linker flags for the target system. The set of
flags is based on the selected tune features. TUNE LDARGS is set
using the tune include files, which are typically under
meta/conf/machine/include/ and are influenced through
TUNE_FEATURES. For example, the
meta/conf/machine/include/x86/arch-

x86 .1nc file defines the flags for the x86 architecture as follows:

TUNE_LDARGS += "${@bb.utils.contains("TUNE_FEATURES", "mx32", "-

| >

Note

Board Support Packages (BSPs) select the tune.
The selected tune, in turn, affects the tune
variables themselves (i.e. the tune can supply its
own set of flags).

Features used to "tune" a compiler for optimal use given a specific
processor. The features are defined within the tune files and allow
arguments (i.e. TUNE_*ARGS) to be dynamically generated based on
the features.

The OpenEmbedded build system verifies the features to be sure they are
not conflicting and that they are supported.

The BitBake configuration file (neta/conf/bitbake.conf)
defines TUNE FEATURES as follows:

TUNE_FEATURES ??= "${TUNE_FEATURES_tune-${DEFAULTTUNE}}"

See the DEFAULTTUNE variable for more information.

The package architecture understood by the packaging system to define
the architecture, ABI, and tuning of output packages. The specific tune is
defined using the "_tune" override as follows:

TUNE_PKGARCH_tune-tune = "tune"

These tune-specific package architectures are defined in the machine
include files. Here is an example of the "core2-32" tuning as used in the
meta/conf/machine/include/tune-core2.inc
file:

TUNE_PKGARCH_tune-core2-32 = "core2-32"

An underlying Application Binary Interface (ABI) used by a particular
tuning in a given toolchain layer. Providers that use prebuilt libraries can
use the TUNEABTI, TUNEABI OVERRIDE, and

TUNEARI WHITELIST variables to check compatibility of tunings
against their_selection of libraries.

If TUNEABT is undefined, then every tuning is allowed. See the
sanity class to see how the variable is used.

If set, the OpenEmbedded system ignores the
TUNEABT WHITELTIST variable. Providers that use prebuilt

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

221/235

3/4/2020 Yocto Project Reference Manual

libraries can use the TUNEABI OVERRIDE,
TUNEABI WHT TELIST, and TUNEABT variables to check
compatibility of a tuning against their selection of libraries.

See the sanity class to see how the variable is used.

TUNEABI_WHITELISTY|
A whitelist of permissible TUNEABT values. If

TUNEABI WHITELIST is not set, all tunes are allowed. Providers
that use pretIliIt libraries can use the TUNEABTI WHITELIST,
TUNEABI OVERRIDE, and TUNEABT variables to check
compatibility_of a tuning against their selection of libraries.

See the sani ty class to see how the variable is used.

TUNECONFLICTS[feature]
Specifies CPU or Application Binary Interface (ABI) tuning features that
conflict with feature.

Known tuning conflicts are specified in the machine include files in the
Source Directory. Here is an example from the
meta/conf/machine/include/mips/arch-
mips.inc include file that lists the "032" and "n64" features as
conflicting with the "n32" feature:

TUNECONFLICTS[n32] = "032 n64"

TUNEVALID[feature]q
Specifies a valid CPU or Application Binary Interface (ABI) tuning feature.
The specified feature is stored as a flag. Valid features are specified in the
machine include files (e.g.
meta/conf/machine/include/arm/arch-
arm.inc). Here is an example from that file:

TUNEVALID[bigendian] = "Enable big-endian mode."

See the machine include files in the Source Directory for these features.

UBOOT_CONFIGY
Configures the UBOOT MACHTNE and can also define

IMAGE FSTYPES for individual cases.

Following is an example from the meta—-fsl—-arm layer.

UBOOT_CONFIG ??= "sd"

UBOOT_CONFIG[sd] = "mx6qgsabreauto_config,sdcard"
UBOOT_CONFIG[eimnor] = "mx6qgsabreauto_eimnor_config"
UBOOT_CONFIG[nand] = "mx6qgsabreauto_nand_config,ubifs"
UBOOT_CONFIG[spinor] = "mx6gsabreauto_spinor_config"

In this example, "sd" is selected as the configuration of the possible four
for the UBOOT MACHINE. The "sd" configuration defines
"mx6qsabreautojconfig" as the value for UBOOT MACHINE, while
the "sdcard" specifies the IMAGE FSTYPES to use for the U-boot
image.

For more information on how the UBOOT CONFIG is handled, see the
uboot-config class.

UBOOT_ENTRYPOINTY|
Specifies the entry point for the U-Boot image. During U-Boot image

creation, the UBOOT ENTRYPOINT variable is passed as a
command-line parameter to the uboot-mkimage utility.

UBOOT_LOADADDRESSY
Specifies the load address for the U-Boot image. During U-Boot image
creation, the UBOOT LOADADDRESS variable is passed as a
command-line parameter to the uboot-mkimage utility.

UBOOT_LOCALVERSIONS|
Appends a string to the name of the local version of the U-Boot image. For

example, assuming the version of the U-Boot image built was "2013.10,
the full version string reported by U-Boot would be "2013.10-yocto" given
the following statement:

UBOOT_LOCALVERSION = "-yocto"

UBOOT_MACHINES|

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 222/235

http://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/meta/classes/uboot-config.bbclass

3/4/2020 Yocto Project Reference Manual

Specifies the value passed on the make command line when building a
U-Boot image. The value indicates the target platform configuration. You
typically set this variable from the machine configuration file (i.e.
conf/machine/machine_name.conf).

Please see the "Selection of Processor Architecture and Board Type"
section in the U-Boot README for valid values for this variable.

UBOOT_MAKE_TARGETY|
Specifies the target called in the Make file. The default target is "all".

UBOOT_SUFFIXY|
Points to the generated U-Boot extension. For example, U—boot . sb

has a . Sb extension.
The default U-Boot extension is . bin

UBOOT_TARGET
Specifies the target used for building U-Boot. The target is passed directly

as part of the "make" command (e.g. SPL and AIS). If you do not
specifically set this variable, the OpenEmbedded build process passes and
uses "all" for the target during the U-Boot building process.

UNKNOWN_CONFIGURE_WHITELISTY|
Specifies a list of options that, if reported by the configure script as being

invalid, should not generate a warning during the do_configure
task. Normally, invalid configure options are simply not passed to the
configure script (e.g. should be removed from EXTRA OECONEF or
PACKAGECONFTIG CONFARGS). However, common options, for
example, exist that are passed to all configure scripts at a class level that
might not be valid for some configure scripts. It follows that no benefit
exists in seeing a warning about these options. For these cases, the
options are added to UNKNOWN CONFIGURE WHITELIST.

The configure arguments check that uses
UNKNOWN CONFIGURE WHITELIST is part of the insane
class and is only enabled if the recipe inherits the autotools class.

UPDATERCPNY|
For recipes inheriting the update—rc.d class, UPDATERCPN

specifies the package that contains the initscript that is enabled.

The default value is "${PN}". Given that almost all recipes that install
initscripts package them in the main package for the recipe, you rarely
need to set this variable in individual recipes.

UPSTREAM_CHECK_GITTAGREGEXY|
You can perform a per-recipe check for what the latest upstream source
code version is by calling bitbake -c checkpkg recipe. If the
recipe source code is provided from Git repositories, the OpenEmbedded
build system determines the latest upstream version by picking the latest
tag from the list of all repository tags.

You can use the UPSTREAM CHECK GITTAGREGEX variable to
provide a regular expression to filter only the relevant tags should the
default filter not work correctly.

UPSTREAM_CHECK_GITTAGREGEX = "git_tag_regex"

UPSTREAM_CHECK_REGEXY|
Use the UPSTREAM CHECK REGEX variable to specify a different

regular expression instead of the default one when the package checking
system is parsing the page found using UPSTREAM CHECK URT.

UPSTREAM_CHECK_REGEX = "package_regex"

UPSTREAM_CHECK_URIY
You can perform a per-recipe check for what the latest upstream source
code version is by calling bitbake -c checkpkg recipe. If the
source code is provided from tarballs, the latest version is determined by
fetching the directory listing where the tarball is and attempting to find a
later tarball. When this approach does not work, you can use
UPSTREAM CHECK URT to provide a different URI that contains
the link to the latest tarball.

UPSTREAM_CHECK_URI = "recipe_url"

USE_DEVFSY|
Determines if devtmpfs is used for /dev population. The default
value used for USE DEVE'S is "1" when no value is specifically set.
Typically, you would set USE DEVE'S to "0" for a statically populated
/dev directory.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 223/235

3/4/2020

USE_VTY

USER_CLASSESY|

USERADD_ERROR_DYNAMICY|

USERADD_GID_TABLESY|

USERADD_PACKAGESY|

Yocto Project Reference Manual

See the "Selecting_a Device Manager" section in the Yocto Project
Development Tasks Manual for information on how to use this variable.

When using SysVinit, determines whether or not to run a getty on any
virtual terminals in order to enable logging in through those terminals.

The default value used for USE_ VT is "1" when no default value is
specifically set. Typically, you would set USE_ VT to "0" in the machine
configuration file for machines that do not have a graphical display
attached and therefore do not need virtual terminal functionality.

A list of classes to globally inherit. These classes are used by the
OpenEmbedded build system to enable extra features (e.g.
buildstats, image-mklibs, and so forth).

The default list is set in your Llocal.conf file:

USER_CLASSES ?= "buildstats image-mklibs image-prelink"

For more information, see meta—
poky/conf/local.conf.sample inthe Source Directory.

If set to "error", forces the OpenEmbedded build system to produce an
error if the user identification (11 d) and group identification (gid)
values are not defined in files/passwdand files/group
files. If set to "warn", a warning will be issued instead.

The default behavior for the build system is to dynamically apply uid
and gid values. Consequently, the USERADD ERROR DYNAMIC
variable is by default not set. If you plan on using_statically a_ssigned gid
and uid values, you should set the USERADD ERROR DYNAMIC
variable in your Local . conf file as follows: a

USERADD_ERROR_DYNAMIC = "error"

Overriding the default behavior implies you are going to also take steps to
set static uid and gid values through use of the
USERADDEXTENSION, USERADD UID TABLES, and
USERADD GID TABLES variables.

Specifies a password file to use for obtaining static group identification
(gid) values when the OpenEmbedded build system adds a group to the
system during package installation.

When applying static group identification (g1d) values, the
OpenEmbedded build system looks in BBPATH fora files/group
file and then applies those uid values. Set the variable as follows in your
local.conf file:

USERADD_GID_TABLES = "files/group"

Note

Setting the USERADDEXTENSTON variable
to "useradd-staticids" causes the build system to
use static gid values.

When inheriting the useradd class, this variable specifies the
individual packages within the recipe that require users and/or groups to
be added.

You must set this variable if the recipe inherits the class. For example, the
following enables adding a user for the main package in a recipe:

USERADD_PACKAGES = "${PN}"

Note

It follows that if you are going to use the
USERADD PACKAGES variable, you need
to set one or more of the

USERADD PARAM,

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 224/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#selecting-dev-manager
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#new-recipe-enabling-system-services
http://en.wikipedia.org/wiki/Getty_%28Unix%29

3/4/2020

w

USERADD_PARAMY|

USERADD_UID_TABLES|

USERADDEXTENSIONY]|

VOLATILE_LOG_DIRS|

Yocto Project Reference Manual

GROUPADD_PARAM, or
GROUPMEMS _PARAM variables.

When inheriting the useradd class, this variable specifies for a
package what parameters should pass to the useradd command if you
add a user to the system when the package is installed.

Here is an example from the dbus recipe:
USERADD_PARAM_${PN} = "--system --home ${localstatedir}/lib/dbus

--no-create-home --shell /bin/false \
--user-group messagebus"

| »

For information on the standard Linux shell command useradd, see
http://linux.die.net/man/8/useradd.

Specifies a password file to use for obtaining static user identification
(uid) values when the OpenEmbedded build system adds a user to the
system during package installation.

When applying static user identification (11 d) values, the
OpenEmbedded build system looks in BBPATH for a
files/passwd file and then applies those U1d values. Set the
variable as follows in your Llocal .conf file:

USERADD_UID_TABLES = "files/passwd"

Note

Setting the USERADDEXTENSTON variable
to "useradd-staticids" causes the build system to
use static uid values.

When set to "useradd-staticids", causes the OpenEmbedded build system
to base all user and group additions on a static passwd and group
files found in BBPATH.

To use static user identification (U1 d) and group identification (gid)
values, set the variable as follows in your 1ocal .conf file:

USERADDEXTENSION = "useradd-staticids"

Note

Setting this variable to use static uid and
gid values causes the OpenEmbedded build
system to employ the useradd—
staticids dass.

If you use static uid and gid information, you must also specify the
files/passwdand files/group files by setting the
USERADD _UID TABLES and USERADD _GID TABLES
variables. Additionally, you should also set the

USERADD _ERROR_DYNAMIC variable.

Specifies the persistence of the target's /Var/log directory, which is
used to house postinstall target log files.

By default, VOLATILE LOG DIR is set to "yes", which means the
file is not persistent. You can override this setting by setting the variable
to "no" to make the log directory persistent.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

225/235

http://linux.die.net/man/8/useradd

3/4/2020

WARN_QAS|

WKS_FILE_DEPENDS

WKS_FILES|

WORKDIRS|

XSERVER(|

Chapter 14. Variable Context]|

Yocto Project Reference Manual

Specifies the quality assurance checks whose failures are reported as
warnings by the OpenEmbedded build system. You set this variable in
your distribution configuration file. For a list of the checks you can control
with this variable, see the "insane .bbclass" section.

When placed in the recipe that builds your image, this variable lists build-
time dependencies. The WKS FILE DEPENDS variable is only
applicable when Wic images are activeﬁ.e. when IMAGE FSTYPES
contains entries related to Wic). If your recipe does not create Wic
images, the variable has no effect.

The WKS FILE DEPENDS variable is similar to the DEPENDS
variable. When you use the variable in your recipe that builds the Wic
image, dependencies you list in the WIC FILE DEPENDS variable
are added to the DEPENDS variable.

With the WKS FILE DEPENDS variable, you have the possibility to
specify a list of additional dependencies (e.g. native tools, bootloaders,
and so forth), that are required to build Wic images. Following is an
example:

WKS_FILE_DEPENDS = "some-native-tool"

In the previous example, some-native-tool would be replaced with an
actual native tool on which the build would depend.

Specifies the location of the Wic kickstart file that is used by the
OpenEmbedded build system to create a partitioned image (image . Wi C).
For information on how to create a partitioned image, see the "Creating
Partitioned Images Using_Wic" section in the Yocto Project Development
Tasks Manual. For details on the kickstart file format, see the
"OpenEmbedded Kickstart (. Wk S)_Reference Chapter.

The pathname of the work directory in which the OpenEmbedded build
system builds a recipe. This directory is located within the TMPDTR
directory structure and is specific to the recipe being built and the system
for which it is being built.

The WORKDIR directory is defined as follows:

${TMPDIR}/work/${MULTIMACH_TARGET_SYS}/${PN}/${EXTENDPE}${PV}-${
< 3
The actual directory depends on several things:

o TMPDIR: The top-level build output directory

o MULTIMACH TARGET SYS: The target system identifier

e PN: The recipe name

o EXTENDPE: The epoch - (if PE is not specified, which is usually the
case for most recipes, then EXTENDPE is blank)

e PV: The recipe version

e« PR: The recipe revision

As an example, assume a Source Directory top-level folder name poky,
a default Build Directory at poky/build, and a gemux86-—
poky-1inux machine target system. Furthermore, suppose your
recipe is named foo 1.3.0-r0.Dbb. In this case, the work
directory the build system uses to build the package would be as follows:

poky/build/tmp/work/qemux86-poky-linux/foo/1.3.0-re

Specifies the packages that should be installed to provide an X server and
drivers for the current machine, assuming your image directly includes
packagegroup-core-xll-xserver or perhaps indirectly,
includes "x11-base" in IMAGE_FEATURES.

The default value of XSERVER, if not specified in the machine
configuration, is "xserver-xorg xf86-video-fbdev xf86-input-evdev".

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

226/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#creating-partitioned-images-using-wic

3/4/2020

Yocto Project Reference Manual

Table of Contents

14.1. Configuration
14.1.1. Distribution (Distro)
14.1.2. Machine
14.1.3. Local

14.2. Recipes
14.2.1. Required
14.2.2. Dependencies
14.2.3. Paths
14.2.4. Extra Build Information

While you can use most variables in almost any context such as . conf, .bbclass, .1inc, and .bb files, some
variables are often associated with a particular locality or context. This chapter describes some common associations.

14.1. Configurationq

The following subsections provide lists of variables whose context is configuration: distribution, machine, and local.

14.1.1. Distribution (Distro)q

This section lists variables whose configuration context is the distribution, or distro.
¢« DISTRO
. DISTRO_NAME

e DISTRO VERSTON
o MAINTAINER

o PACKAGE CLASSES
o TARGET OS

o TARGET FPU

« TCMODE

« TCLIBC

14.1.2. Machineq

This section lists variables whose configuration context is the machine.
. TARGET_ARCH
. SERIAL_CONSOLES

+ PACKAGE EXTRA ARCHS

o IMAGE FSTYPES
o MACHINE FEATURES

o MACHINE EXTRA RDEPENDS

o MACHINE EXTRA RRECOMMENDS

o MACHINE ESSENTIATL EXTRA RDEPENDS

o MACHINE ESSENTIATL EXTRA RRECOMMENDS

14.1.3. Localf

This section lists variables whose configuration context is the local configuration through the 1ocal . conf file.
¢« DISTRO

o MACHINE

« DL DIR

« BBEFILES

o EXTRA TMAGE FEATURES

« PACKAGE CLASSES

« BB_NUMBER THREADS
o BBINCLUDELOGS

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

227/235

3/4/2020

Yocto Project Reference Manual
o ENABLE BINARY LOCALE GENERATION

14.2. Recipesf|

The following subsections provide lists of variables whose context is recipes: required, dependencies, path, and extra build
information.

14.2.1. Requiredq

This section lists variables that are required for recipes.

o LICENSE

« LIC FILES CHKSUM

e« SRC_URT - used in recipes that fetch local or remote files.

14.2.2. Dependenciesf|

This section lists variables that define recipe dependencies.
« DEPENDS

o RDEPENDS

o RRECOMMENDS

o RCONFLICTS

« RREPLACES

14.2.3. Paths{

This section lists variables that define recipe paths.
o WORKDIR
e S

o« FILES

14.2.4. Extra Build Information{

This section lists variables that define extra build information for recipes.
e DEFAULT PREFERENCE

o EXTRA OECMAKE

o EXTRA OECONF

o EXTRA OEMAKE
o PACKAGECONFIG CONFARGS

« PACKAGES

Chapter 15. FAQT

15.1. How does Poky differ from OpenEmbedded?

15.2. My development system does not meet the required Git, tar,_and Python versions. In particular, I do not have Python
3.4.0 or greater. Can I still use the Yocto Project?

15.3. How can you claim Poky / OpenEmbedded-Core is stable?

15.4. How do I get support for my board added to the Yocto Project?

15.5. Are there any products built using_the OpenEmbedded build system?

15.6. What does the OpenEmbedded build system produce as output?

15.7. How do I add my package to the Yocto Project?

15.8. Do I have to reflash my entire board with a new Yocto Project image when recompiling_a package?

15.9. I see the error 'chmod: XXXXX new permissions are r-xrwxrwx,_not r-xr-xr-x'. What is wrong?

15.10. I see lots of 404 responses for files when the OpenEmbedded build system is trying_to download sources. Is
something_wrong?

15.11. I have machine-specific data in a package for one machine only but the package is being_marked as machine-specific
in all cases, how do I prevent this?

15.12. I'm behind a firewall and need to use a proxy server. How do I do that?

15.13. What's the difference between target and target-native?

15.14. I'm seeing_random build failures. Help?!

15.15. When I try to build a native recipe,_the build fails with iconv.h problems.

15.16. What do we need to ship for license compliance?

15.17. How do I disable the cursor on my touchscreen device?

15.18. How do I make sure connected network interfaces are brought up by default?

15.19. How do I create images with more free space?

15.20. Why don't you support directories with spaces in the pathnames?

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

228/235

3/4/2020

15.21
15.22
15.23
15.24
15.25

Yocto Project Reference Manual

How do I use an external toolchain?
How does the OpenEmbedded build system obtain source code and will it work behind my firewall or proxy server?
Can I get rid of build output so I can start over?

The files provided by my *-native recipe do not appear to be available to other recipes. Files are missing_from the

native sysroot,_ my_recipe is installing_to the wrong_place, or I am getting_permissions errors during_the do install task in my

recipe! What is wrong?

15.1.

How does Poky differ from OpenEmbedded?

The term "Poky" refers to the specific reference build system that the Yocto Project provides. Poky is based on OE-
Core and BitBake. Thus, the generic term used here for the build system is the "OpenEmbedded build system."
Development in the Yocto Project using Poky is closely tied to OpenEmbedded, with changes always being merged
to OE-Core or BitBake first before being pulled back into Poky. This practice benefits both projects immediately.

15.2.

My development system does not meet the required Git, tar, and Python versions. In particular, I do not have
Python 3.4.0 or greater. Can I still use the Yocto Project?

You can get the required tools on your host development system a couple different ways (i.e. building a tarball or
downloading a tarball). See the "Required Git, tar,_and Python Versions" section for steps on how to update your
build tools.

15.3.

How can you claim Poky / OpenEmbedded-Core is stable?

There are three areas that help with stability;

e The Yocto Project team keeps OE-Core small and focused, containing around 830 recipes as opposed to the
thousands available in other OpenEmbedded community layers. Keeping it small makes it easy to test and
maintain.

e The Yocto Project team runs manual and automated tests using a small, fixed set of reference hardware as well
as emulated targets.

e The Yocto Project uses an autobuilder, which provides continuous build and integration tests.

15.4.

How do I get support for my board added to the Yocto Project?

Support for an additional board is added by creating a Board Support Package (BSP) layer for it. For more
information on how to create a BSP layer, see the "Understanding_and Creating_Layers" section in the Yocto Project
Development Tasks Manual and the Yocto Project Board Support Package (BSP)_Developer's Guide.

Usually, if the board is not completely exotic, adding support in the Yocto Project is fairly straightforward.

15.5.

Are there any products built using the OpenEmbedded build system?

The software running on the Vernier LabQuest is built using the OpenEmbedded build system. See the Vernier
LabQuest website for more information. There are a number of pre-production devices using the OpenEmbedded
build system and the Yocto Project team announces them as soon as they are released.

15.6.

What does the OpenEmbedded build system produce as output?

Because you can use the same set of recipes to create output of various formats, the output of an OpenEmbedded
build depends on how you start it. Usually, the output is a flashable image ready for the target device.

15.7.

How do I add my package to the Yocto Project?

To add a package, you need to create a BitBake recipe. For information on how to create a BitBake recipe, see the
"Writing_a New Recipe" section in the Yocto Project Development Tasks Manual.

15.8.

Do I have to reflash my entire board with a new Yocto Project image when recompiling a package?

The OpenEmbedded build system can build packages in various formats such as IPK for OPKG, Debian package
(. deb), or RPM. You can then upgrade the packages using the package tools on the device, much like on a
desktop distribution such as Ubuntu or Fedora. However, package management on the target is entirely optional.

15.9.

I see the error 'chmod: XXXXX new permissions are r—-xrwxrwx, not r-xr-
X¥r—x'. What is wrong?

You are probably running the build on an NTFS filesystem. Use ext 2, ext 3, or ext4 instead.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 229/235

http://www.openembedded.org/
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#understanding-and-creating-layers
http://www.yoctoproject.org/docs/3.1/bsp-guide/bsp-guide.html
http://vernier.com/labquest/
http://www.vernier.com/products/interfaces/labq/
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#new-recipe-writing-a-new-recipe

3/4/2020

Yocto Project Reference Manual

15.10. I see lots of 404 responses for files when the OpenEmbedded build system is trying to download sources. Is
something wrong?
Nothing is wrong. The OpenEmbedded build system checks any configured source mirrors before downloading
from the upstream sources. The build system does this searching for both source archives and pre-checked out
versions of SCM-managed software. These checks help in large installations because it can reduce load on the
SCM servers themselves. The address above is one of the default mirrors configured into the build system.
Consequently, if an upstream source disappears, the team can place sources there so builds continue to work.
15.11. I have machine-specific data in a package for one machine only but the package is being marked as machine-
specific in all cases, how do I prevent this?
Set SRC_URT OVERRIDES PACKAGE ARCH ="0"inthe . bb file but make sure the package is
manually marked as machine-specific for the case that needs it. The code that handles
SRC_URI OVERRIDES PACKAGE ARCHisinthemeta/classes/base.bbclass file.
15.12. I'm behind a firewall and need to use a proxy server. How do I do that?
Most source fetching by the OpenEmbedded build system is done by wget and you therefore need to specify the
proxy settings in a . wgetrc file, which can be in your home directory if you are a single user or can be in
/usr/local/etc/wgetrc as a global user file.
Following is the applicable code for setting various proxy types in the . wgetrc file. By default, these settings
are disabled with comments. To use them, remove the comments:
You can set the default proxies for Wget to use for http, https, and ftp.
They will override the value in the environment.
#https_proxy = http://proxy.yoyodyne.com:18023/
#http_proxy = http://proxy.yoyodyne.com:18023/
#ftp_proxy = http://proxy.yoyodyne.com:18023/
If you do not want to use proxy at all, set this to off.
#use_proxy = on
The Yocto Project also includes a meta-poky/conf/site.conf.sample file that shows how to
configure CVS and Git proxy servers if needed. For more information on setting up various proxy types and
configuring proxy servers, see the "Working_Behind a Network Proxy" Wiki page.
15.13. What's the difference between target and target—native?
The *—native targets are designed to run on the system being used for the build. These are usually tools that
are needed to assist the build in some way such as quilt—-native, which is used to apply patches. The
non-native version is the one that runs on the target device.
15.14. I'm seeing random build failures. Help?!
If the same build is failing in totally different and random ways, the most likely explanation is:
e The hardware you are running the build on has some problem.
e You are running the build under virtualization, in which case the virtualization probably has bugs.
The OpenEmbedded build system processes a massive amount of data that causes lots of network, disk and CPU
activity and is sensitive to even single-bit failures in any of these areas. True random failures have always been
traced back to hardware or virtualization issues.
15.15. When I try to build a native recipe, the build fails with 1conv . h problems.
If you get an error message that indicates GNU 1 1biconv is not in use but 1conv. h has been included
from 11lbiconv, you need to check to see if you have a previously installed version of the header file in
/usr/local/include.
#error GNU libiconv not in use but included iconv.h is from libiconv
If you find a previously installed file, you should either uninstall it or temporarily rename it and try the build again.
This issue is just a single manifestation of "system leakage" issues caused when the OpenEmbedded build system
finds and uses previously installed files during a native build. This type of issue might not be limited to
iconv.h. Be sure that leakage cannot occur from /usr/local/include and /opt locations.
15.16. What do we need to ship for license compliance?

This is a difficult question and you need to consult your lawyer for the answer for your specific case. It is worth

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 230/235

https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

3/4/2020

Yocto Project Reference Manual

bearing in mind that for GPL compliance, there needs to be enough information shipped to allow someone else to
rebuild and produce the same end result you are shipping. This means sharing the source code, any patches
applied to it, and also any configuration information about how that package was configured and built.

You can find more information on licensing in the "Licensing" section in the Yocto Project Overview and Concepts
Manual and also in the "Maintaining_Open Source License Compliance During_Your Product's Lifecycle" section in
the Yocto Project Development Tasks Manual.

15.17. How do I disable the cursor on my touchscreen device?

You need to create a form factor file as described in the "Miscellaneous BSP-Specific Recipe Files" section in the

Yocto Project Board Support Packages (BSP) Developer's Guide. Set the HAVE TOUCHSCREEN variable

equal to one as follows:

HAVE_TOUCHSCREEN=1
15.18. How do I make sure connected network interfaces are brought up by default?

The default interfaces file provided by the netbase recipe does not automatically bring up network interfaces.

Therefore, you will need to add a BSP-specific netbase that includes an interfaces file. See the "Miscellaneous BSP-

Specific Recipe Files" section in the Yocto Project Board Support Packages (BSP) Developer's Guide for information

on creating these types of miscellaneous recipe files.

For example, add the following files to your layer:
meta-MACHINE/recipes-bsp/netbase/netbase/MACHINE/interfaces
meta-MACHINE/recipes-bsp/netbase/netbase_5.0.bbappend

15.19. How do I create images with more free space?

By default, the OpenEmbedded build system creates images that are 1.3 times the size of the populated root

filesystem. To affect the image size, you need to set various configurations:

e Image Size: The OpenEmbedded build system uses the IMAGE_ROOTFES STZFE variable to define the
size of the image in Kbytes. The build system determines the size by taking into account the initial root
filesystem size before any modifications such as requested size for the image and any requested additional free
disk space to be added to the image.

e Overhead: Use the IMAGE OVERHEAD FACTOR variable to define the multiplier that the build system
applies to the initial image size, which is 1.3 by default.

 Additional Free Space: Use the IMAGE ROOTFS EXTRA SPACE variable to add additional free
space to the image. The build system adds this space to the image after it determines its
IMAGE_ROOTFS_SI ZE.

15.20. Why don't you support directories with spaces in the pathnames?

The Yocto Project team has tried to do this before but too many of the tools the OpenEmbedded build system

depends on, such as autoconf, break when they find spaces in pathnames. Until that situation changes, the

team will not support spaces in pathnames.
15.21. How do I use an external toolchain?

The toolchain configuration is very flexible and customizable. It is primarily controlled with the TCMODE

variable. This variable controls which t cmode—* . inc file to include from the

meta/conf/distro/include directory within the Source Directory.

The default value of TCMODE is "default", which tells the OpenEmbedded build system to use its internally built

toolchain (i.e. tcmode—-default.inc). However, other patterns are accepted. In particular, "external-*"

refers to external toolchains. One example is the Sourcery G++ Toolchain. The support for this toolchain resides in
the separate meta—-sourcery layer at http://github.com/MentorEmbedded/meta-sourcery/.

In addition to the toolchain configuration, you also need a corresponding toolchain recipe file. This recipe file

needs to package up any pre-built objects in the toolchain such as 1ibgcc, 1ibstdcc++, any locales, and

libc.
15.22. How does the OpenEmbedded build system obtain source code and will it work behind my firewall or proxy server?

The way the build system obtains source code is highly configurable. You can setup the build system to get source
code in most environments if HTTP transport is available.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

231/235

http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#licensing
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/3.1/bsp-guide/bsp-guide.html#bsp-filelayout-misc-recipes
http://www.yoctoproject.org/docs/3.1/bsp-guide/bsp-guide.html#bsp-filelayout-misc-recipes
http://github.com/MentorEmbedded/meta-sourcery/

3/4/2020

Yocto Project Reference Manual

When the build system searches for source code, it first tries the local download directory. If that location fails,
Poky tries PREMTRRORS, the upstream source, and then MIRRORS in that order.

Assuming your distribution is "poky", the OpenEmbedded build system uses the Yocto Project source
PREMIRRORS by default for SCM-based sources, upstreams for normal tarballs, and then falls back to a
number of other mirrors including the Yocto Project source mirror if those fail.

As an example, you could add a specific server for the build system to attempt before any others by adding
something like the following to the 1ocal . conf configuration file:

PREMIRRORS_prepend = "\

git://.*/.* http://www.yoctoproject.org/sources/ \n \

ftp://.*/.* http://www.yoctoproject.org/sources/ \n \

http://.*/.* http://www.yoctoproject.org/sources/ \n \
https://.*/.* http://www.yoctoproject.org/sources/ \n"

These changes cause the build system to intercept Git, FTP, HTTP, and HTTPS requests and direct them to the
http:// sources mirror. You can use £ile:// URLs to point to local directories or network shares as well.

Aside from the previous technique, these options also exist:

BB_NO_NETWORK = "1"

This statement tells BitBake to issue an error instead of trying to access the Internet. This technique is useful if
you want to ensure code builds only from local sources.

Here is another technique:

BB_FETCH_PREMIRRORONLY = "1"

This statement limits the build system to pulling source from the PREMTRRORS only. Again, this technique is
useful for reproducing builds.

Here is another technique:

BB_GENERATE_MIRROR_TARBALLS = "1"

This statement tells the build system to generate mirror tarballs. This technique is useful if you want to create a
mirror server. If not, however, the technique can simply waste time during the build.

Finally, consider an example where you are behind an HTTP-only firewall. You could make the following changes to
the local.conf configuration file as long as the PREMIRRORS server is current:

PREMIRRORS_prepend = "\

ftp://.*/.* http://www.yoctoproject.org/sources/ \n \
http://.*/.* http://www.yoctoproject.org/sources/ \n \
https://.*/.* http://www.yoctoproject.org/sources/ \n"
BB_FETCH_PREMIRRORONLY = "1"

These changes would cause the build system to successfully fetch source over HTTP and any network accesses to
anything other than the PREMIRRORS would fail.

The build system also honors the standard shell environment variables ht tp proxy, ftp proxy,
https proxy,andall proxy to redirect requests through proxy servers.

Note

You can find more information on the "Working_Behind a Network Proxy" Wiki page.

15.23. Can I get rid of build output so I can start over?
Yes - you can easily do this. When you use BitBake to build an image, all the build output goes into the directory
created when you run the build environment setup script (i.e. ce—init-build-env). By default, this
Build Directory is named Ibui 1d but can be named anything you want.
Within the Build Directory, is the Tmp directory. To remove all the build output yet preserve any source code or
downloaded files from previous builds, simply remove the tmp directory.

15.24. Why do ${bindir} and ${1ibdir} have strange values for —-native recipes?

Executables and libraries might need to be used from a directory other than the directory into which they were
initially installed. Complicating this situation is the fact that sometimes these executables and libraries are
compiled with the expectation of being run from that initial installation target directory. If this is the case, moving
them causes problems.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

232/235

https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

3/4/2020 Yocto Project Reference Manual

This scenario is a fundamental problem for package maintainers of mainstream Linux distributions as well as for
the OpenEmbedded build system. As such, a well-established solution exists. Makefiles, Autotools configuration
scripts, and other build systems are expected to respect environment variables such as bindir, 1ibdir,
and sysconfdir that indicate where executables, libraries, and data reside when a program is actually run.
They are also expected to respect a DESTDIR environment variable, which is prepended to all the other
variables when the build system actually installs the files. It is understood that the program does not actually run
from within DESTDIR.

When the OpenEmbedded build system uses a recipe to build a target-architecture program (i.e. one that is
intended for inclusion on the image being built), that program eventually runs from the root file system of that
image. Thus, the build system provides a value of "/usr/bin" for bindir, a value of "/usr/lib" for 1 ibdir,
and so forth.

Meanwhile, DESTDIR is a path within the Build Directory. However, when the recipe builds a native program
(i.e. one that is intended to run on the build machine), that program is never installed directly to the build
machine's root file system. Consequently, the build system uses paths within the Build Directory for DESTDIR,
bindir and related variables. To better understand this, consider the following two paths where the first is
relatively normal and the second is not:

Note

Due to these lengthy examples, the paths are artificially broken across lines for
readability.

/home/maxtothemax/poky-bootchart2/build/tmp/work/i586-poky-1linux/z1ib/
1.2.8-r0@/sysroot-destdir/usr/bin

/home/maxtothemax/poky-bootchart2/build/tmp/work/x86_64-1inux/
zlib-native/1.2.8-r@/sysroot-destdir/home/maxtothemax/poky-bootchart2/
build/tmp/sysroots/x86_64-1linux/usr/bin

Even if the paths look unusual, they both are correct - the first for a target and the second for a native recipe.
These paths are a consequence of the DESTDIR mechanism and while they appear strange, they are correct
and in practice very effective.

15.25. The files provided by my * —native recipe do not appear to be available to other recipes. Files are missing
from the native sysroot, my recipe is installing to the wrong place, or I am getting permissions errors during the
do_install task in my recipe! What is wrong?

This situation results when a build system does not recognize the environment variables supplied to it by BitBake.
The incident that prompted this FAQ entry involved a Makefile that used an environment variable named
BINDIR instead of the more standard variable bindi r. The makefile's hardcoded default value of "/usr/bin"
worked most of the time, but not for the recipe's —nat ive variant. For another example, permissions errors
might be caused by a Makefile that ignores DESTDIR or uses a different name for that environment variable.
Check the the build system to see if these kinds of issues exist.

Chapter 16. Contributions and Additional Information{]

Table of Contents

16.1. Introduction

16.2. Contributions

16.3. Yocto Project Bugzilla

16.4. Mailing_lists

16.5. Internet Relay Chat (IRC),

16.6. Links and Related Documentation

16.1. Introductionq|

The Yocto Project team is happy for people to experiment with the Yocto Project. A number of places exist to find help if you
run into difficulties or find bugs. This presents information about contributing and participating in the Yocto Project.

16.2. Contributions

The Yocto Project gladly accepts contributions. You can submit changes to the project either by creating and sending pull
requests, or by submitting patches through email. For information on how to do both as well as information on how to

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html 233/235

3/4/2020

Yocto Project Reference Manual

identify the maintainer for each area of code, see the "Submitting_a Change to the Yocto Project" section in the Yocto Project
Development Tasks Manual.

16.3. Yocto Project Bugzillaf

The Yocto Project uses its own implementation of Bugzilla to track defects (bugs). Implementations of Bugzilla work well for
group development because they track bugs and code changes, can be used to communicate changes and problems with
developers, can be used to submit and review patches, and can be used to manage quality assurance.

Sometimes it is helpful to submit, investigate, or track a bug against the Yocto Project itself (e.g. when discovering an issue
with some component of the build system that acts contrary to the documentation or your expectations).

A general procedure and guidelines exist for when you use Bugzilla to submit a bug. For information on how to use Bugzilla
to submit a bug against the Yocto Project, see the following:

e The "Submitting_a Defect Against the Yocto Project" section in the Yocto Project Development Tasks Manual.

e The Yocto Project Bugzilla wiki page

For information on Bugzilla in general, see http://www.bugzilla.org/about/.

16.4. Mailing listsf|

A number of mailing lists maintained by the Yocto Project exist as well as related OpenEmbedded mailing lists for discussion,
patch submission and announcements. To subscribe to one of the following mailing lists, click on the appropriate URL in the
following list and follow the instructions:

e http://lists.yoctoproject.org/listinfo/yocto - General Yocto Project discussion mailing list.

e http://lists.openembedded.org/mailman/listinfo/openembedded-core - Discussion mailing list about OpenEmbedded-Core
(the core metadata).

e http://lists.openembedded.org/mailman/listinfo/openembedded-devel - Discussion mailing list about OpenEmbedded.

e http://lists.openembedded.org/mailman/listinfo/bitbake-devel - Discussion mailing list about the BitBake build tool.

e http://lists.yoctoproject.org/listinfo/poky - Discussion mailing list about Poky.

e http://lists.yoctoproject.org/listinfo/yocto-announce - Mailing list to receive official Yocto Project release and milestone
announcements.

For more Yocto Project-related mailing lists, see the Yocto Project Website.

16.5. Internet Relay Chat (IRC){|

Two IRC channels on freenode are available for the Yocto Project and Poky discussions:
. #yocto

o #poky

16.6. Links and Related Documentation€|
Here is a list of resources you might find helpful:

e The Yocto Project website: The home site for the Yocto Project.

e The Yocto Project Main Wiki Page: The main wiki page for the Yocto Project. This page contains information about
project planning, release engineering, QA & automation, a reference site map, and other resources related to the Yocto
Project.

e OpenEmbedded: The build system used by the Yocto Project. This project is the upstream, generic, embedded
distribution from which the Yocto Project derives its build system (Poky) and to which it contributes.

e BitBake: The tool used to process metadata.
e BitBake User Manual: A comprehensive guide to the BitBake tool. If you want information on BitBake, see this manual.

e Yocto Project Quick Build: This short document lets you experience building an image using the Yocto Project without
having to understand any concepts or details.

e Yocto Project Overview and Concepts Manual: This manual provides overview and conceptual information about the
Yocto Project.

e Yocto Project Development Tasks Manual: This manual is a "how-to" guide that presents procedures useful to both
application and system developers who use the Yocto Project.

guide provides information that lets you get going with the standard or extensible SDK. An SDK, with its cross-

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

234/235

http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#how-to-submit-a-change
http://bugzilla.yoctoproject.org/
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html#submitting-a-defect-against-the-yocto-project
https://wiki.yoctoproject.org/wiki/Bugzilla_Configuration_and_Bug_Tracking
http://www.bugzilla.org/about/
http://lists.yoctoproject.org/listinfo/yocto
http://lists.openembedded.org/mailman/listinfo/openembedded-core
http://lists.openembedded.org/mailman/listinfo/openembedded-devel
http://lists.openembedded.org/mailman/listinfo/bitbake-devel
http://lists.yoctoproject.org/listinfo/poky
http://lists.yoctoproject.org/listinfo/yocto-announce
http://www.yoctoproject.org/
http://www.yoctoproject.org/
https://wiki.yoctoproject.org/wiki/Main_Page
http://www.openembedded.org/
http://www.openembedded.org/wiki/BitBake
http://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html
http://www.yoctoproject.org/docs/3.1/brief-yoctoprojectqs/brief-yoctoprojectqs.html
http://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html
http://www.yoctoproject.org/docs/3.1/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/3.1/sdk-manual/sdk-manual.html

3/4/2020

Yocto Project Reference Manual

development toolchains, allows you to develop projects inside or outside of the Yocto Project environment.

components. Having a commonly understood structure encourages standardization.

Yocto Project Linux Kernel Development Manual: This manual describes how to work with Linux Yocto kernels as
well as provides a bit of conceptual information on the construction of the Yocto Linux kernel tree.

Yocto Project Reference Manual: This manual provides reference material such as variable, task, and class
descriptions.

Yocto Project Mega-Manual: This manual is simply a single HTML file comprised of the bulk of the Yocto Project
manuals. The Mega-Manual primarily exists as a vehicle by which you can easily search for phrases and terms used in the
Yocto Project documentation set.

Yocto Project Profiling and Tracing Manual: This manual presents a set of common and generally useful tracing and
profiling schemes along with their applications (as appropriate) to each tool.

Toaster User Manual: This manual introduces and describes how to set up and use Toaster. Toaster is an Application
Programming Interface (API) and web-based interface to the OpenEmbedded Build System, which uses BitBake, that
reports build information.

FAQ: A list of commonly asked questions and their answers.

Release Notes: Features, updates and known issues for the current release of the Yocto Project. To access the Release
Notes, go to the Downloads page on the Yocto Project website and click on the "RELEASE INFORMATION" link for the
appropriate release.

Bugzilla: The bug tracking application the Yocto Project uses. If you find problems with the Yocto Project, you should
report them using this application.

implementation of Bugzilla for logging and tracking Yocto Project defects.

Internet Relay Chat (IRC): Two IRC channels on freenode are available for Yocto Project and Poky discussions:
#yocto and #poky, respectively.

https://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html

235/235

http://www.yoctoproject.org/docs/3.1/bsp-guide/bsp-guide.html
http://www.yoctoproject.org/docs/3.1/kernel-dev/kernel-dev.html
http://www.yoctoproject.org/docs/3.1/ref-manual/ref-manual.html
http://www.yoctoproject.org/docs/3.1/mega-manual/mega-manual.html
http://www.yoctoproject.org/docs/3.1/profile-manual/profile-manual.html
http://www.yoctoproject.org/docs/3.1/toaster-manual/toaster-manual.html
https://wiki.yoctoproject.org/wiki/FAQ
http://www.yoctoproject.org/software-overview/downloads/
http://bugzilla.yoctoproject.org/
https://wiki.yoctoproject.org/wiki/Bugzilla_Configuration_and_Bug_Tracking
http://wiki.qemu.org/Index.html

