3/4/2020

Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

Scott Rifenbark

Scotty's Documentation Services, INC
<srifenbark@gmail.com>

Copyright © 2010-2018 Linux Foundation

Permission is granted to copy, distribute and/or modify this document under the terms of the Creative Commons Attribution-
Share Alike 2.0 UK: England & Wales as published by Creative Commons.

Manual Notes

e This version of the Yocto Project Application Development and the Extensible Software

Development Kit (eSDK) manual is for the 2.5 release of the Yocto Project. To be sure you have
the latest version of the manual for this release, go to the Yocto Project documentation page and
select the manual from that site. Manuals from the site are more up-to-date than manuals derived
from the Yocto Project released TAR files.

If you located this manual through a web search, the version of the manual might not be the one

you want (e.g. the search might have returned a manual much older than the Yocto Project
version with which you are working). You can see all Yocto Project major releases by visiting the
Releases page. If you need a version of this manual for a different Yocto Project release, visit the
Yocto Project documentation page and select the manual set by using the "ACTIVE RELEASES

DOCUMENTATION" or "DOCUMENTS ARCHIVE" pull-down menus.

e To report any inaccuracies or problems with this manual, send an email to the Yocto Project
discussion group at yocto@yoctoproject.com or log into the freenode #yocto

channel.

’ Revision History

’Revision 2.1

| April 2016

’Released with the Yocto Project 2.1 Release.

’Revision 2.2

|October 2016

’Released with the Yocto Project 2.2 Release.

’Revision 2.3

[May 2017

’Released with the Yocto Project 2.3 Release.

’Revision 2.4

|October 2017

’Released with the Yocto Project 2.4 Release.

’Revision 2.5

|May 2018

’Released with the Yocto Project 2.5 Release.

Table of Contents

1. Introduction
1.1. Introduction

1.1.1. The Cross-Development Toolchain

1.1.2. Sysroots
1.1.3. The QEMU Emulator
1.1.4. Eclipse™ Yocto Plug-in

1.1.5. Performance Enhancing_Tools

1.2. SDK Development Model
2. Using_the Extensible SDK

2.1. Why use the Extensible SDK and What is in It?

2.2. Installing_the Extensible SDK

2.3. Running_the Extensible SDK Environment Setup Script

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html

1/51

mailto:srifenbark@gmail.com
http://creativecommons.org/licenses/by-sa/2.0/uk/
http://www.yoctoproject.org/documentation
https://wiki.yoctoproject.org/wiki/Releases
http://www.yoctoproject.org/documentation

3/4/2020

Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

2.4. Using devt ool in Your SDK Workflow
2.4.1. Use devtool add to Add an Application

2.4.2. Use devtool modify to Modify the Source of an Existing Component

2.5. A Closer Look at devtool add

2.5.1. Name and Version

2.5.2. Dependency Detection and Mapping
2.5.3. License Detection

2.5.4. Adding_Makefile-Only_Software
2.5.5. Adding_Native Tools
2.5.6.
Wi

Adding_Node.js Modules

2.6. Working_With Recipes
2.6.1. Finding_Logs and Work Files
2.6.2. Setting_Configure Arguments
2.6.3. Sharing_Files Between Recipes

2.6.4. Packaging

2.7. Restoring_the Target Device to its Original State
2.8. Installing_Additional Items Into the Extensible SDK

2.10. Creating_a Derivative SDK With Additional Components

3. Using_the Standard SDK
3.1. Why use the Standard SDK and What is in It?
3.2. Installing_the SDK
3.3. Running_the SDK Environment Setup Script

4. Using_the SDK Toolchain Directly
4.1. Autotools-Based Projects
4.2. Makefile-Based Projects

5. Developing_Applications Using_Eclipse™
5.1. Application Development Workflow Using_Eclipse™
5.2. Working_Within Eclipse
5.2.1. Setting_Up the Oxygen Version of the Eclipse IDE

.2.2. Creating_the Project
.2.3. Configuring_the Cross-Toolchains
.2.4. Building_the Project
.2.5.
.2.6.

Starting_QEMU in User-Space NFS Mode
Deploying_and Debugging_the Application
5.2.7. Using_Linuxtools

A. Obtaining_the SDK
A.1. Locating_Pre-Built SDK Installers
A.2. Building_an SDK Installer
A.3. Extracting_the Root Filesystem
A.4. Installed Standard SDK Directory Structure
A.5. Installed Extensible SDK Directory Structure

B. Customizing_the Extensible SDK
B.1. Configuring_the Extensible SDK
B.2. Adjusting_the Extensible SDK to Suit Your Build Host's Setup
B.3. Changing_the Extensible SDK Installer Title
B.4. Providing_Updates to the Extensible SDK After Installation
B.5. Providing_Additional Installable Extensible SDK Content

U1 |ur|ut|jun [

B.6. Minimizing_the Size of the Extensible SDK Installer Download

C. Customizing_the Standard SDK
C.1. Adding_Individual Packages to the Standard SDK
C.2. Adding_API Documentation to the Standard SDK

D. Using_Eclipse™ Neon
D.1. Setting_Up the Neon Version of the Eclipse IDE
D.1.1. Installing_the Neon Eclipse IDE
D.1.2. Configuring_the Neon Eclipse IDE
D.1.3. Installing_or Accessing_the Neon Eclipse Yocto Plug-in
D.1.4. Configuring_the Neon Eclipse Yocto Plug-In

D.2. Creating_the Project

D.3. Configuring_the Cross-Toolchains

D.4. Building_the Project

D.5. Starting_ QEMU in User-Space NFS Mode
D.6. Deploying_and Debugging_the Application
D.7. Using_Linuxtools

Chapter 1. Introductionq

Table of Contents

1.1. Introduction
1.1.1. The Cross-Development Toolchain
1.1.2. Sysroots
1.1.3. The QEMU Emulator
1.1.4. Eclipse™ Yocto Plug-in
1.1.5. Performance Enhancing_Tools

1.2. SDK Development Model

1.1. Introductionq

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html

2/51

3/4/2020 Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

Welcome to the Yocto Project Application Development and the Extensible Software Development Kit (eSDK) manual. This
manual provides information that explains how to use both the Yocto Project extensible and standard SDKs to develop
applications and images. Additionally, the manual also provides information on how to use the popular Eclipse™ IDE as part of
your application development workflow within the SDK environment.

Note

Prior to the 2.0 Release of the Yocto Project, application development was primarily accomplished
through the use of the Application Development Toolkit (ADT) and the availability of stand-alone cross-
development toolchains and other tools. With the 2.1 Release of the Yocto Project, application
development has transitioned to within a tool-rich extensible SDK and the more traditional standard
SDK.

All SDKs consist of the following:
e Cross-Development Toolchain: This toolchain contains a compiler, debugger, and various miscellaneous tools.

e Libraries, Headers, and Symbols: The libraries, headers, and symbols are specific to the image (i.e. they match the
image).

e Environment Setup Script: This * . sh file, once run, sets up the cross-development environment by defining variables
and preparing for SDK use.

Additionally, an extensible SDK has tools that allow you to easily add new applications and libraries to an image, modify the
source of an existing component, test changes on the target hardware, and easily integrate an application into the
OpenEmbedded build system.

You can use an SDK to independently develop and test code that is destined to run on some target machine. SDKs are
completely self-contained. The binaries are linked against their own copy of 1 1loC, which results in no dependencies on the
target system. To achieve this, the pointer to the dynamic loader is configured at install time since that path cannot be
dynamically altered. This is the reason for a wrapper around the populate sdkand populate sdk ext
archives.

Another feature for the SDKs is that only one set of cross-compiler toolchain binaries are produced for any given architecture.
This feature takes advantage of the fact that the target hardware can be passed to JCC as a set of compiler options. Those
options are set up by the environment script and contained in variables such as CC and LD. This reduces the space needed for
the tools. Understand, however, that every target still needs a sysroot because those binaries are target-specific.

The SDK development environment consists of the following:

e The self-contained SDK, which is an architecture-specific cross-toolchain and matching sysroots (target and native) all built
by the OpenEmbedded build system (e.g. the SDK). The toolchain and sysroots are based on a Metadata configuration and
extensions, which allows you to cross-develop on the host machine for the target hardware. Additionally, the extensible SDK
contains the devtool functionality.

e The Quick EMUlator (QEMU), which lets you simulate target hardware. QEMU is not literally part of the SDK. You must build
and include this emulator separately. However, QEMU plays an important role in the development process that revolves
around use of the SDK.

e The Eclipse IDE Yocto Plug-in. This plug-in is available for you if you are an Eclipse user. In the same manner as QEMU, the
plug-in is not literally part of the SDK but is rather available for use as part of the development process.

e Various performance-related tools that can enhance your development experience. These tools are also separate from the
actual SDK but can be independently obtained and used in the development process.

In summary, the extensible and standard SDK share many features. However, the extensible SDK has powerful development
tools to help you more quickly develop applications. Following is a table that summarizes the primary differences between the
standard and extensible SDK types when considering which to build:

Feature Standard SDK Extensible SDK

Toolchain Yes Yes*

Debugger Yes Yes*

Size 100+ MBytes 1+ GBytes (or 300+ MBytes for minimal w/toolchain)
devtool No Yes

Build Images No Yes

Updateable No Yes

Managed Sysroot** No Yes

Installed Packages No*** Yes****

Construction Packages Shared State

* Extensible SDK contains the toolchain and debugger if SDK EXT TYPE is "full" or SDK_TINCLUDE TOC

** Sysroot is managed through the use of devtool. Thus, it is less likely that you will corrupt your SDK sys
*** You can add runtime package management to the standard SDK but it is not supported by default.
**¥%% You must build and make the shared state available to extensible SDK users for "packages" you want to enable

| »

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 3/51

http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#build-system-term
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-CC
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-LD
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#metadata
http://www.eclipse.org/linuxtools/index.php
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-SDK_EXT_TYPE
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-SDK_INCLUDE_TOOLCHAIN

3/4/2020 Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

1.1.1. The Cross-Development Toolchain{

The Cross-Development Toolchain consists of a cross-compiler, cross-linker, and cross-debugger that are used to develop user-
space applications for targeted hardware. Additionally, for an extensible SDK, the toolchain also has built-in devtool
functionality. This toolchain is created by running a SDK installer script or through a Build Directory that is based on your
metadata configuration or extension for your targeted device. The cross-toolchain works with a matching target sysroot.

1.1.2. Sysroots(

The native and target sysroots contain needed headers and libraries for generating binaries that run on the target architecture.
The target sysroot is based on the target root filesystem image that is built by the OpenEmbedded build system and uses the
same metadata configuration used to build the cross-toolchain.

1.1.3. The QEMU Emulatorf]

The QEMU emulator allows you to simulate your hardware while running your application or image. QEMU is not part of the SDK
but is made available a number of different ways:

¢ If you have cloned the POk Y Git repository to create a Source Directory and you have sourced the environment setup script,
QEMU is installed and automatically available.

e If you have downloaded a Yocto Project release and unpacked it to create a Source Directory and you have sourced the
environment setup script, QEMU is installed and automatically available.

e If you have installed the cross-toolchain tarball and you have sourced the toolchain's setup environment script, QEMU is also
installed and automatically available.

1.1.4. Eclipse™ Yocto Plug-in{

The Eclipse IDE is a popular development environment and it fully supports development using the Yocto Project. When you
install and configure the Eclipse Yocto Project Plug-in into the Eclipse IDE, you maximize your Yocto Project experience.
Installing and configuring the Plug-in results in an environment that has extensions specifically designed to let you more easily
develop software. These extensions allow for cross-compilation, deployment, and execution of your output into a QEMU
emulation session. You can also perform cross-debugging and profiling. The environment also supports many performance-
related tools that enhance your development experience.

Note

Previous releases of the Eclipse Yocto Plug-in supported "user-space tools" (i.e. LatencyTOP, PowerTOP,
Perf, SystemTap, and Lttng-ust) that also added to the development experience. These tools have been
deprecated with the release of the Eclipse Yocto Plug-in.

For information about the application development workflow that uses the Eclipse IDE and for a detailed example of how to
install and configure the Eclipse Yocto Project Plug-in, see the "Developing_Applications Using_Eclipse™" Chapter.

1.1.5. Performance Enhancing Tools{

Supported performance enhancing tools are available that let you profile, debug, and perform tracing on your projects developed
using Eclipse. For information on these tools see http://www.eclipse.org/linuxtools/.

1.2. SDK Development Modelq

Fundamentally, the SDK fits into the development process as follows:

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 4/51

http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#cross-development-toolchain
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#build-directory
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#source-directory
http://www.eclipse.org/linuxtools/index.php
http://www.eclipse.org/linuxtools/

3/4/2020 Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

SDK Machine

Yocto Project Machine

Compile Code
Debug Code
Hosts an SDK

SDK Machine

Compile Code
Debug Code
Hosts an SDK

SDK Machine

Target Hardware
Objects Compile Code
== | Debug Code

Hosts an SDK

The SDK is installed on any machine and can be used to develop applications, images, and kernels. An SDK can even be used by
a QA Engineer or Release Engineer. The fundamental concept is that the machine that has the SDK installed does not have to be
associated with the machine that has the Yocto Project installed. A developer can independently compile and test an object on
their machine and then, when the object is ready for integration into an image, they can simply make it available to the machine
that has the Yocto Project. Once the object is available, the image can be rebuilt using the Yocto Project to produce the modified
image.

You just need to follow these general steps:

1. Install the SDK for your target hardware: For information on how to install the SDK, see the "Installing_the SDK"
section.

N

. Download or Build the Target Image: The Yocto Project supports several target architectures and has many pre-built
kernel images and root filesystem images.

If you are going to develop your application on hardware, go to the machines download area and choose a target
machine area from which to download the kernel image and root filesystem. This download area could have several files
in it that support development using actual hardware. For example, the area might contain . hddimg files that
combine the kernel image with the filesystem, boot loaders, and so forth. Be sure to get the files you need for your
particular development process.

If you are going to develop your application and then run and test it using the QEMU emulator, go to the

machines/ gemu download area. From this area, go down into the directory for your target architecture (e.g.
gemux86 64 for an Intel®-based 64-bit architecture). Download the kernel, root filesystem, and any other files you
need for your process.

Note

To use the root filesystem in QEMU, you need to extract it. See the "Extracting_the Root
Filesystem" section for information on how to extract the root filesystem.

3. Develop and Test your Application: At this point, you have the tools to develop your application. If you need to
separately install and use the QEMU emulator, you can go to QEMU Home Page to download and learn about the

information on using QEMU within the Yocto Project.

The remainder of this manual describes how to use the extensible and standard SDKs. Information also exists in appendix form
that describes how you can build, install, and modify an SDK.

Chapter 2. Using the Extensible SDKY

Table of Contents

2.1. Why use the Extensible SDK and What is in It?

2.2. Installing_the Extensible SDK

2.3. Running_the Extensible SDK Environment Setup Script
2.4. Using_ devt ool in Your SDK Workflow

2.4.1. Usedevtool add to Add an Application
2.4.2. Use devtool modi fy to Modify the Source of an Existing_ Component
2.4.3. Usedevtool upgrade to Create a Version of the Recipe that Supports a Newer Version of the Software

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 5/51

http://downloads.yoctoproject.org/releases/yocto/yocto-2.5/machines
http://downloads.yoctoproject.org/releases/yocto/yocto-2.5/machines/qemu
http://wiki.qemu.org/Main_Page
http://www.yoctoproject.org/docs/2.5/dev-manual/dev-manual.html#dev-manual-qemu

3/4/2020

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html

Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

2.5. A Closer Look at devtool add

N
U1
-

. Name and Version
Dependency Detection and Mapping
License Detection

Adding_Native Tools
Adding_Node.js Modules

ng_With Recipes
. Finding_Logs and Work Files
.6.2. Setting_Configure Arguments

.6.3. Sharing_Files Between Recipes
2.6.4. Packaging

2.7. Restoring_the Target Device to its Original State
2.8. Installing_Additional Items Into the Extensible SDK

(S (S2R(O0 (6, (5]

2.6. rk

=)

.5.2.
.5.3.
.5.4. Adding_Makefile-Only Software
.5.5.
.5.6.
i
6.1

N (O

NINNIS NN NN N

2.10. Creating_a Derivative SDK With Additional Components

This chapter describes the extensible SDK and how to install it. Information covers the pieces of the SDK, how to install it, and
presents a look at using the devt ool functionality. The extensible SDK makes it easy to add new applications and libraries to
an image, modify the source for an existing component, test changes on the target hardware, and ease integration into the rest

of the OpenEmbedded build system.

Note

For a side-by-side comparison of main features supported for an extensible SDK as compared to a
standard SDK, see the "Introduction" section.

In addition to the functionality available through devtool, you can alternatively make use of the toolchain directly, for
example from Makefile, Autotools, and Eclipse™-based projects. See the "Using_the SDK Toolchain Directly" chapter for more

information.

2.1. Why use the Extensible SDK and What is in 1t?]

The extensible SDK provides a cross-development toolchain and libraries tailored to the contents of a specific image. You would
use the Extensible SDK if you want a toolchain experience supplemented with the powerful set of devt ool commands
tailored for the Yocto Project environment.

The installed extensible SDK consists of several files and directories. Basically, it contains an SDK environment setup script,
some configuration files, an internal build system, and the devt ool functionality.

2.2. Installing the Extensible SDKY
The first thing you need to do is install the SDK on your Build Host by running the * . sh installation script.

You can download a tarball installer, which includes the pre-built toolchain, the rungemu script, the internal build system,
devtool, and support files from the appropriate toolchain directory within the Index of Releases. Toolchains are available for
several 32-bit and 64-bit architectures with the x86 64 directories, respectively. The toolchains the Yocto Project provides
are based off the core—image-sato and core-image-minimal images and contain libraries appropriate for

developing against that image.

The names of the tarball installer scripts are such that a string representing the host system appears first in the filename and
then is immediately followed by a string representing the target architecture. An extensible SDK has the string "-ext" as part of

the name. Following is the general form:

poky-glibc-host_system-image_type-arch-toolchain-ext-release_version.sh

Where:
host_system is a string representing your development system:

1686 or x86_64.
image_type is the image for which the SDK was built:
core-image-sato or core-image-minimal
arch is a string representing the tuned target architecture:
aarch64, armv5e, core2-64, i586, mips32r2, mips64, ppc7400, or cortexa8hf-neon
release_version is a string representing the release number of the Yocto Project:
2.5, 2.5+snapshot
For example, the following SDK installer is for a 64-bit development host system and a i586-tuned target architecture based off
the SDK for core—-1image—-sato and using the current 2.5 snapshot:

poky-glibc-x86_64-core-image-sato-i586-toolchain-ext-2.5.sh

6/51

http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#build-system-term
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#hardware-build-system-term
http://downloads.yoctoproject.org/releases/yocto/yocto-2.5/toolchain/

3/4/2020 Yocto Project Application Development and the Extensible Software Development Kit (eSDK)
Note

As an alternative to downloading an SDK, you can build the SDK installer. For information on building
the installer, see the "Building_an SDK Installer" section. Another helpful resource for building an
installer is the Cookbook guide to Making_an Eclipse Debug_Capable Image wiki page. This wiki page
focuses on development when using the Eclipse IDE.

The SDK and toolchains are self-contained and by default are installed into the PO ky_sdk folder in your home directory. You
can choose to install the extensible SDK in any location when you run the installer. However, because files need to be written
under that directory during the normal course of operation, the location you choose for installation must be writable for
whichever users need to use the SDK.

The following command shows how to run the installer given a toolchain tarball for a 64-bit x86 development host system and a
64-bit x86 target architecture. The example assumes the SDK installer is located in ~ /Downloads/ and has execution
rights.

Note

If you do not have write permissions for the directory into which you are installing the SDK, the
installer notifies you and exits. For that case, set up the proper permissions in the directory and run
the installer again.

$./Downloads/poky-glibc-x86_64-core-image-minimal-core2-64-toolchain-ext-2.5.sh
Poky (Yocto Project Reference Distro) Extensible SDK installer version 2.5

Enter target directory for SDK (default: ~/poky_sdk):

You are about to install the SDK to "/home/scottrif/poky_sdk". Proceed[Y/n]? Y
Extracting SDK.............. done

Setting it up...

Extracting buildtools...

Preparing build system...

Parsing recipes: 100% | | Time: @:00:52
Initialising tasks: 100% | | Time: ©:00:00
Checking sstate mirror object availability: 100% | | Time: 0:00:00
Loading cache: 100% | | Time: 0:00:00
Initialising tasks: 100% | | Time: 0:00:00

done

SDK has been successfully set up and is ready to be used.

Each time you wish to use the SDK in a new shell session, you need to source the environment setup script e.g.
$. /home/scottrif/poky_sdk/environment-setup-core2-64-poky-linux

2.3. Running the Extensible SDK Environment Setup Script]

Once you have the SDK installed, you must run the SDK environment setup script before you can actually use the SDK. This
setup script resides in the directory you chose when you installed the SDK, which is either the default PO ky_S dk directory or
the directory you chose during installation.

Before running the script, be sure it is the one that matches the architecture for which you are developing. Environment setup
scripts begin with the string "envi ronment-setup" and include as part of their name the tuned target architecture. As
an example, the following commands set the working directory to where the SDK was installed and then source the environment
setup script. In this example, the setup script is for an IA-based target machine using i586 tuning:

$ cd /home/scottrif/poky_sdk

$ source environment-setup-core2-64-poky-1linux

SDK environment now set up; additionally you may now run devtool to perform development tasks.
Run devtool --help for further details.

Running the setup script defines many environment variables needed in order to use the SDK (e.g. PATH, CC, LD, and so
forth). If you want to see all the environment variables the script exports, examine the installation file itself.

2.4. Using devtool in Your SDK Workflow(|

The cornerstone of the extensible SDK is a command-line tool called devt oo 1. This tool provides a number of features that
help you build, test and package software within the extensible SDK, and optionally integrate it into an image built by the
OpenEmbedded build system.

Tip
The use of devt ool is not limited to the extensible SDK. You can use devt ool to help you
easily develop any project whose build output must be part of an image built using the build system.

The devtool command line is organized similarly to Git in that it has a number of sub-commands for each function. You can
run devtool --help to see all the commands.

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 7151

https://wiki.yoctoproject.org/wiki/TipsAndTricks/RunningEclipseAgainstBuiltImage
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-CC
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-LD
http://www.yoctoproject.org/docs/2.5/overview-manual/overview-manual.html#git

3/4/2020 Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

Note

See the "devtool Quick Reference" in the Yocto Project Reference Manual for a devtool quick
reference.

Three devt 0ol subcommands exist that provide entry-points into development:

« devtool add: Assists in adding new software to be built.

« devtool modify: Sets up an environment to enable you to modify the source of an existing component.
« devtool upgrade: Updates an existing recipe so that you can build it for an updated set of source files.

As with the build system, "recipes" represent software packages within devtool. When you use devtool add, a
recipe is automatically created. When you use devtool modi fy, the specified existing recipe is used in order to
determine where to get the source code and how to patch it. In both cases, an environment is set up so that when you build the
recipe a source tree that is under your control is used in order to allow you to make changes to the source as desired. By
default, new recipes and the source go into a "workspace" directory under the SDK.

The remainder of this section presents the devtool add, devtool modify, and devtool upgrade
workflows.

2.4.1. Use devtool add to Add an Applicationf

The devtool add command generates a new recipe based on existing source code. This command takes advantage of the
workspace layer that many devt ool commands use. The command is flexible enough to allow you to extract source code
into both the workspace or a separate local Git repository and to use existing code that does not need to be extracted.

Depending on your particular scenario, the arguments and options you use with devtool add form different combinations.
The following diagram shows common development flows you would use with the devtool add command:

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 8/51

http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#ref-devtool-reference
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#devtool-the-workspace-layer-structure

3/4/2020

Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

Upstream Source Upstream Source
srctree
SRC_URI SRC_URI srctree
A

devtool add recipe fetchur devtool add recipe srciree fetchur

workspace * workspace * *srctree

. appends o appends
wd recipes Ll recipes
wal sOuUrces

@ T@

T

devtool add recipe srctree

workspace *

wd appends
il recipes

Editor

% devtool edit-recipe recipe

®

workspace ool build recipe

ol recipes ar
% bitbake recipe

Build Qutput

@

% devtool deploy-target recipe target

' Ve

srctree @

‘__., % dewvtool finish recipe layer

Commits)
Fatch Files
workspace layer

ol conf

®

% devtool build-image image

Build Output

1. Generating the New Recipe: The top part of the flow shows three scenarios by which you could use devtool

add to generate a recipe based on existing source code.

In a shared development environment, it is typical for other developers to be responsible for various areas of source
code. As a developer, you are probably interested in using that source code as part of your development within the Yocto
Project. All you need is access to the code, a recipe, and a controlled area in which to do your work.

Within the diagram, three possible scenarios feed into the devtool add workflow:

e Left: The left scenario in the figure represents a common situation where the source code does not exist locally and
needs to be extracted. In this situation, the source code is extracted to the default workspace - you do not want the
files in some specific location outside of the workspace. Thus, everything you need will be located in the workspace:

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html

@

9/51

3/4/2020 Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

$ devtool add recipe fetchuri

With this command, devt ool extracts the upstream source files into a local Git repository within the sources
folder. The command then creates a recipe named recipe and a corresponding append file in the workspace. If you do
not provide recipe, the command makes an attempt to determine the recipe name.

e Middle: The middle scenario in the figure also represents a situation where the source code does not exist locally. In
this case, the code is again upstream and needs to be extracted to some local area - this time outside of the default
workspace.

Note

If required, devt ool always creates a Git repository locally during the extraction.

Furthermore, the first positional argument srctree in this case identifies where the devtool add command will
locate the extracted code outside of the workspace. You need to specify an empty directory:

$ devtool add recipe srctree fetchuri

In summary, the source code is pulled from fetchuri and extracted into the location defined by srctree as a local Git
repository.

Within workspace, devt ool creates a recipe named recipe along with an associated append file.

e Right: The right scenario in the figure represents a situation where the srctree has been previously prepared outside
of the devt ool workspace.

The following command provides a new recipe name and identifies the existing source tree location:

$ devtool add recipe srctree

The command examines the source code and creates a recipe named recipe for the code and places the recipe into
the workspace.

Because the extracted source code already exists, devt ool does not try to relocate the source code into the
workspace - only the new recipe is placed in the workspace.

Aside from a recipe folder, the command also creates an associated append folder and places an initial
* .bbappend file within.

2. Edit the Recipe: You can use devtool edit-recipe to open up the editor as defined by the SEDITOR
environment variable and modify the file:

$ devtool edit-recipe recipe

From within the editor, you can make modifications to the recipe that take affect when you build it later.

3. Build the Recipe or Rebuild the Image: The next step you take depends on what you are going to do with the new
code.

If you need to eventually move the build output to the target hardware, use the following devtool command:

$ devtool build recipe

On the other hand, if you want an image to contain the recipe's packages from the workspace for immediate deployment
onto a device (e.g. for testing purposes), you can use the devtool build-image command:

$ devtool build-image image

4. Deploy the Build Output: When you use the devtool builld command to build out your recipe, you probably
want to see if the resulting build output works as expected on the target hardware.

Note

This step assumes you have a previously built image that is already either running in QEMU or
is running on actual hardware. Also, it is assumed that for deployment of the image to the
target, SSH is installed in the image and, if the image is running on real hardware, you have
network access to and from your development machine.

You can deploy your build output to that target hardware by using the devtool deploy-target command:

$ devtool deploy-target recipe target

The target is a live target machine running as an SSH server.

You can, of course, also deploy the image you build to actual hardware by using the devtool build-image
command. However, devt ool does not provide a specific command that allows you to deploy the image to actual

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 10/51

3/4/2020

Yocto Project Application Development and the Extensible Software Development Kit (eSDK)
hardware.

5. Finish Your Work With the Recipe: The devtool finish command creates any patches corresponding to
commits in the local Git repository, moves the new recipe to a more permanent layer, and then resets the recipe so that
the recipe is built normally rather than from the workspace.

$ devtool finish recipe Layer

Note

Any changes you want to turn into patches must be committed to the Git repository in the
source tree.

As mentioned, the devtool finish command moves the final recipe to its permanent layer.

As a final process of the devtool finish command, the state of the standard layers and the upstream source is
restored so that you can build the recipe from those areas rather than the workspace.

Note

You can use the devtool reset command to put things back should you decide you do

not want to proceed with your work. If you do use this command, realize that the source tree is
preserved.

2.4.2. Use devtool modify to Modify the Source of an Existing Component|

The devtool modi f'y command prepares the way to work on existing code that already has a local recipe in place that is
used to build the software. The command is flexible enough to allow you to extract code from an upstream source, specify the
existing recipe, and keep track of and gather any patch files from other developers that are associated with the code.

Depending on your particular scenario, the arguments and options you use with devtool modi fy form different
combinations. The following diagram shows common development flows for the devtool modi fy command:

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html

11/51

3/4/2020 Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

Local Layer Upstream Source Local Layer Upstream Source

Local Layer
{recipe) {recipe) (recipe) srctree
| SRC LRI —m= ?—-— SRC_URI i sretree —m
@ @ * ©

devtool modify recipe devtool modify recipe srctree devtool modify -n recipe srctree
workspace * workspace * *srctree workspace *
wd appends wdl appends z wdl appends

wal sources

Editor

Edit Source Files Using Your
Favarite Editor

$ devtool build recipe % devtool build-image image

Build Output Build Qutput

@

% devtool deploy-target recipe target

¥ Vo

srctree @

ull—3pp- § devtool finish recipe layer

Cammits
Patch Fles
workspace layer

il conf

1. Preparing to Modify the Code: The top part of the flow shows three scenarios by which you could use devtool
modi fv to prepare to work on source files. Each scenario assumes the following:

e The recipe exists locally in a layer external to the devt ool workspace.
e The source files exist either upstream in an un-extracted state or locally in a previously extracted state.

The typical situation is where another developer has created a layer for use with the Yocto Project and their recipe
already resides in that layer. Furthermore, their source code is readily available either upstream or locally.

e Left: The left scenario in the figure represents a common situation where the source code does not exist locally and it
needs to be extracted from an upstream source. In this situation, the source is extracted into the default devtool
workspace location. The recipe, in this scenario, is in its own layer outside the workspace (i.e. met a—Layername).

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 12/51

3/4/2020

Yocto Project Application Development and the Extensible Software Development Kit (eSDK)
The following command identifies the recipe and, by default, extracts the source files:

$ devtool modify recipe

Once devtoollocates the recipe, devt ool uses the recipe's SRC_URT statements to locate the source code
and any local patch files from other developers.

With this scenario, no srctree argument exists. Consequently, the default behavior of the devtool modify
command is to extract the source files pointed to by the SRC_URT statements into a local Git structure.
Furthermore, the location for the extracted source is the default area within the devt ool workspace. The result is
that the command sets up both the source code and an append file within the workspace while the recipe remains in
its original location.

e Middle: The middle scenario in the figure represents a situation where the source code also does not exist locally. In
this case, the code is again upstream and needs to be extracted to some local area as a Git repository. The recipe, in
this scenario, is again local and in its own layer outside the workspace.

The following command tells devt ool what recipe with which to work and, in this case, identifies a local area for
the extracted source files that is outside of the default devtool workspace:

$ devtool modify recipe srctree

Note

You cannot provide a URL for srctree using the devtool command.

As with all extractions, the command uses the recipe's SRC_URI statements to locate the source files and any
associated patch files. Once the files are located, the command by default extracts them into srctree.

Within workspace, devt ool creates an append file for the recipe. The recipe remains in its original location but the
source files are extracted to the location you provide with srctree.

e Right: The right scenario in the figure represents a situation where the source tree (srctree) already exists locally as
a previously extracted Git structure outside of the devt 0ol workspace. In this example, the recipe also exists
elsewhere locally in its own layer.

The following command tells devt ool the recipe with which to work, uses the "-n" option to indicate source does
not need to be extracted, and uses srctree to point to the previously extracted source files:

$ devtool modify -n recipe srctree

Once the command finishes, it creates only an append file for the recipe in the devt ool workspace. The recipe
and the source code remain in their original locations.

2. Edit the Source: Once you have used the devtool modify command, you are free to make changes to the

source files. You can use any editor you like to make and save your source code modifications.

. Build the Recipe or Rebuild the Image: The next step you take depends on what you are going to do with the new

code.
If you need to eventually move the build output to the target hardware, use the following devtool command:

$ devtool build recipe

On the other hand, if you want an image to contain the recipe's packages from the workspace for immediate deployment
onto a device (e.g. for testing purposes), you can use the devtool build-image command:

$ devtool build-image image

. Deploy the Build Output: When you use the devtool build command to build out your recipe, you probably

want to see if the resulting build output works as expected on target hardware.

Note

This step assumes you have a previously built image that is already either running in QEMU or
running on actual hardware. Also, it is assumed that for deployment of the image to the target,
SSH is installed in the image and if the image is running on real hardware that you have
network access to and from your development machine.

You can deploy your build output to that target hardware by using the devtool deploy-target command:

$ devtool deploy-target recipe target

The target is a live target machine running as an SSH server.

You can, of course, use other methods to deploy the image you built using the devtool build-image
command to actual hardware. devt 0ol does not provide a specific command to deploy the image to actual hardware.

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 13/51

http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-SRC_URI

3/4/2020

Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

5. Finish Your Work With the Recipe: The devtool finish command creates any patches corresponding to

commits in the local Git repository, updates the recipe to point to them (or creates a . bbappend file to do so,
depending on the specified destination layer), and then resets the recipe so that the recipe is built normally rather than
from the workspace.

$ devtool finish recipe Layer

Note

Any changes you want to turn into patches must be staged and committed within the local Git
repository before you use the devtool finish command.

Because there is no need to move the recipe, devtool finish either updates the original recipe in the original
layer or the command creates a . bbappend file in a different layer as provided by Layer.

As a final process of the devtool finish command, the state of the standard layers and the upstream source is
restored so that you can build the recipe from those areas rather than from the workspace.

Note

You can use the devtool reset command to put things back should you decide you do

not want to proceed with your work. If you do use this command, realize that the source tree is
preserved.

2.4.3. Use devtool upgrade to Create a Version of the Recipe that Supports a Newer Version of
the Softwareq

The devtool upgrade command upgrades an existing recipe to that of a more up-to-date version found upstream.
Throughout the life of software, recipes continually undergo version upgrades by their upstream publishers. You can use the
devtool upgrade workflow to make sure your recipes you are using for builds are up-to-date with their upstream
counterparts.

Note

Several methods exist by which you can upgrade recipes - devtool upgrade happens to be

one. You can read about all the methods by which you can upgrade recipes in the "Upgrading_Recipes"
section of the Yocto Project Development Tasks Manual.

The devtool upgrade command is flexible enough to allow you to specify source code revision and versioning schemes,
extract code into or out of the devt ool workspace, and work with any source file forms that the fetchers support.

The following diagram shows the common development flow used with the devtool upgrade command:

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html

14/51

http://www.yoctoproject.org/docs/2.5/dev-manual/dev-manual.html#gs-upgrading-recipes
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#devtool-the-workspace-layer-structure

3/4/2020 Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

Local Layer Upstream Source
(recipe)

SRC UR

devtool upgrade W version recipe

workspace *

wa appends
mll recipes

wd sources

Editor

Resolve any Conflicts that
Might Exist Due to the
Upgrade

©)

% devtool build-image image

% devtool build recipe
ar
% bitbake recipe

Build Output e Build Output e

@

% devtool deploy-target recipe target

o

&

srctree @
‘_b. % devtool finish recipe layer
Cammits Bateh Biles
workspace * layer
ol conf ‘

1. Initiate the Upgrade: The top part of the flow shows the typical scenario by which you use the devtool
upgrade command. The following conditions exist:

o The recipe exists in a local layer external to the devt ool workspace.

e The source files for the new release exist in the same location pointed to by SRCiURI in the recipe (e.g. a tarball
with the new version number in the name, or as a different revision in the upstream Git repository).

A common situation is where third-party software has undergone a revision so that it has been upgraded. The recipe you
have access to is likely in your own layer. Thus, you need to upgrade the recipe to use the newer version of the software:

$ devtool upgrade -V version recipe

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 15/51

http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-SRC_URI

3/4/2020 Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

By default, the devtool upgrade command extracts source code into the sources directory in the
workspace. If you want the code extracted to any other location, you need to provide the srctree positional argument
with the command as follows:

$ devtool upgrade -V version recipe srctree

Note

In this example, the "-V" option specifies the new version. If you don't use "-V", the command
upgrades the recipe to the latest version.

If the source files pointed to by the SRC_URI statement in the recipe are in a Git repository, you must provide the "-
S" option and specify a revision for the software.

Once devtool locates the recipe, it uses the SRC_URT variable to locate the source code and any local patch files
from other developers. The result is that the command sets up the source code, the new version of the recipe, and an
append file all within the workspace.

2. Resolve any Conflicts created by the Upgrade: Conflicts could exist due to the software being upgraded to a new
version. Conflicts occur if your recipe specifies some patch files in SRC_URI that conflict with changes made in the
new version of the software. For such cases, you need to resolve the conflicts by editing the source and following the
normal git rebase conflict resolution process.

Before moving onto the next step, be sure to resolve any such conflicts created through use of a newer or different
version of the software.

3. Build the Recipe or Rebuild the Image: The next step you take depends on what you are going to do with the new
code.

If you need to eventually move the build output to the target hardware, use the following devtool command:

$ devtool build recipe

On the other hand, if you want an image to contain the recipe's packages from the workspace for immediate deployment
onto a device (e.g. for testing purposes), you can use the devtool build-image command:

$ devtool build-image image

4. Deploy the Build Output: When you use the devtool build command or bitbake to build your recipe, you
probably want to see if the resulting build output works as expected on target hardware.

Note

This step assumes you have a previously built image that is already either running in QEMU or
running on actual hardware. Also, it is assumed that for deployment of the image to the target,
SSH is installed in the image and if the image is running on real hardware that you have
network access to and from your development machine.

You can deploy your build output to that target hardware by using the devtool deploy-target command:

$ devtool deploy-target recipe target

The target is a live target machine running as an SSH server.

You can, of course, also deploy the image you build using the devtool build-image command to actual
hardware. However, devt ool does not provide a specific command that allows you to do this.

5. Finish Your Work With the Recipe: The devtool finish command creates any patches corresponding to
commits in the local Git repository, moves the new recipe to a more permanent layer, and then resets the recipe so that
the recipe is built normally rather than from the workspace. If you specify a destination layer that is the same as the
original source, then the old version of the recipe and associated files will be removed prior to adding the new version.

$ devtool finish recipe Llayer

Note

Any changes you want to turn into patches must be committed to the Git repository in the
source tree.

As a final process of the devtool finish command, the state of the standard layers and the upstream source is
restored so that you can build the recipe from those areas rather than the workspace.

Note

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 16/51

http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#devtool-the-workspace-layer-structure

3/4/2020 Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

You can use the devtool reset command to put things back should you decide you do

not want to proceed with your work. If you do use this command, realize that the source tree is
preserved.

2.5. A Closer Look at devtool addf

The devtool add command automatically creates a recipe based on the source tree you provide with the command.
Currently, the command has support for the following:

e Autotools (autoconf and automake)

e CMake

e Scons

« gmake

e Plain Makefile

e Out-of-tree kernel module

e Binary package (i.e. "-b" option)

e Node.js module

e Python modules that use setuptoolsordistutils

Apart from binary packages, the determination of how a source tree should be treated is automatic based on the files present
within that source tree. For example, if a CMakeLists. txt fileis found, then the source tree is assumed to be using
CMake and is treated accordingly.

Note

In most cases, you need to edit the automatically generated recipe in order to make it build properly.
Typically, you would go through several edit and build cycles until the recipe successfully builds. Once
the recipe builds, you could use possible further iterations to test the recipe on the target device.

The remainder of this section covers specifics regarding how parts of the recipe are generated.

2.5.1. Name and Versionf|

If you do not specify a name and version on the command line, devtool add uses various metadata within the source
tree in an attempt to determine the name and version of the software being built. Based on what the tool determines,
devtool sets the name of the created recipe file accordingly.

If devt ool cannot determine the name and version, the command prints an error. For such cases, you must re-run the
command and provide the name and version, just the name, or just the version as part of the command line.

Sometimes the name or version determined from the source tree might be incorrect. For such a case, you must reset the recipe:

$ devtool reset -n recipename

After running the devtool reset command, you need to run devtool add again and provide the name or the
version.

2.5.2. Dependency Detection and Mappingf|

The devtool add command attempts to detect build-time dependencies and map them to other recipes in the system.
During this mapping, the command fills in the names of those recipes as part of the DEPENDS variable within the recipe. If a
dependency cannot be mapped, devt ool places a comment in the recipe indicating such. The inability to map a dependency
can result from naming not being recognized or because the dependency simply is not available. For cases where the
dependency is not available, you must use the devtool add command to add an additional recipe that satisfies the
dependency. Once you add that recipe, you need to update the DEPENDS variable in the original recipe to include the new
recipe.

If you need to add runtime dependencies, you can do so by adding the following to your recipe:

RDEPENDS_${PN} += "dependencyl dependency2 ..."

Note

The devtool add command often cannot distinguish between mandatory and optional
dependencies. Consequently, some of the detected dependencies might in fact be optional. When in
doubt, consult the documentation or the configure script for the software the recipe is building for
further details. In some cases, you might find you can substitute the dependency with an option that
disables the associated functionality passed to the configure script.

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 17/51

http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-DEPENDS

3/4/2020 Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

2.5.3. License Detectionq

The devtool add command attempts to determine if the software you are adding is able to be distributed under a
common, open-source license. If so, the command sets the LTICENSE value accordingly. You should double-check the value
added by the command against the documentation or source files for the software you are building and, if necessary, update
that LICENSE value.

The devtool add command also setsthe LIC FILES CHKSUM value to point to all files that appear to be license-
related. Realize that license statements often appear in comments at the top of source files or within the documentation. In such
cases, the command does not recognize those license statements. Consequently, you might need to amend the

LIC FILES CHKSUM variable to point to one or more of those comments if present. Setting LIC FILES CHKSUM
is particularly important for third-party software. The mechanism attempts to ensure correct licensing should you upgrade the
recipe to a newer upstream version in future. Any change in licensing is detected and you receive an error prompting you to
check the license text again.

If the devtool add command cannot determine licensing information, devtool sets the LICENSE value to
"CLOSED" and leaves the LIC FILES CHKSUM value unset. This behavior allows you to continue with development even
though the settings are unlikely to be correct in all cases. You should check the documentation or source files for the software
you are building to determine the actual license.

2.5.4. Adding Makefile-Only Software(

The use of Make by itself is very common in both proprietary and open-source software. Unfortunately, Makefiles are often not
written with cross-compilation in mind. Thus, devtool add often cannot do very much to ensure that these Makefiles
build correctly. It is very common, for example, to explicitly call gCC instead of using the CC variable. Usually, in a cross-
compilation environment, gJCC is the compiler for the build host and the cross-compiler is named something similar to arm-—
poky-linux—-gnueabi—-gcc and might require arguments (e.g. to point to the associated sysroot for the target
machine).

When writing a recipe for Makefile-only software, keep the following in mind:

e You probably need to patch the Makefile to use variables instead of hardcoding tools within the toolchain such as gccC and
g++.

e The environment in which Make runs is set up with various standard variables for compilation (e.g. CC, CXX, and so forth)
in a similar manner to the environment set up by the SDK's environment setup script. One easy way to see these variables is
to run the devtool build command on the recipe and then look in oe-1logs/run.do compile. Towards
the top of this file, a list of environment variables exists that are being set. You can take advantage of these variables within
the Makefile.

o If the Makefile sets a default for a variable using "=", that default overrides the value set in the environment, which is usually
not desirable. For this case, you can either patch the Makefile so it sets the default using the "?=" operator, or you can
alternatively force the value on the make command line. To force the value on the command line, add the variable setting to
EXTRA OEMAKE or PACKAGECONETIG CONEARGS within the recipe. Here is an example using
EXTRA OEMAKE: B

EXTRA_OEMAKE += "'CC=${CC}' 'CXX=${CXX}'"

In the above example, single quotes are used around the variable settings as the values are likely to contain spaces because
required default options are passed to the compiler.

e Hardcoding paths inside Makefiles is often problematic in a cross-compilation environment. This is particularly true because
those hardcoded paths often point to locations on the build host and thus will either be read-only or will introduce
contamination into the cross-compilation because they are specific to the build host rather than the target. Patching the
Makefile to use prefix variables or other path variables is usually the way to handle this situation.

e Sometimes a Makefile runs target-specific commands such as 1dconfig. For such cases, you might be able to apply
patches that remove these commands from the Makefile.

2.5.5. Adding Native Tools(

Often, you need to build additional tools that run on the build host as opposed to the target. You should indicate this
requirement by using one of the following methods when you run devtool add:

e Specify the name of the recipe such that it ends with "-native". Specifying the name like this produces a recipe that only
builds for the build host.

o Specify the "--also-native" option with the devtool add command. Specifying this option creates a recipe file that still
builds for the target but also creates a variant with a "-native" suffix that builds for the build host.

Note

If you need to add a tool that is shipped as part of a source tree that builds code for the target, you
can typically accomplish this by building the native and target parts separately rather than within the
same compilation process. Realize though that with the "--also-native" option, you can add the tool
using just one recipe file.

2.5.6. Adding Node.js Modulesf|

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 18/51

http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-LICENSE
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-LIC_FILES_CHKSUM
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-CC
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-EXTRA_OEMAKE
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-PACKAGECONFIG_CONFARGS
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#hardware-build-system-term

3/4/2020

Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

You can use the devtool add command two different ways to add Node.js modules: 1) Through npm and, 2) from a
repository or local source.

Use the following form to add Node.js modules through npm:

$ devtool add "npm://registry.npmjs.org;name=forever;version=0.15.1"

The name and version parameters are mandatory. Lockdown and shrinkwrap files are generated and pointed to by the recipe in
order to freeze the version that is fetched for the dependencies according to the first time. This also saves checksums that are
verified on future fetches. Together, these behaviors ensure the reproducibility and integrity of the build.

Notes

e You must use quotes around the URL. The devtool add does not require the quotes, but
the shell considers ";" as a splitter between multiple commands. Thus, without the quotes,
devtool add does not receive the other parts, which results in several "command not
found" errors.

e In order to support adding Node.js modules, a nodej S recipe must be part of your SDK.

As mentioned earlier, you can also add Node.js modules directly from a repository or local source tree. To add modules this way,
use devtool add in the following form:

$ devtool add https://github.com/diversario/node-ssdp

In this example, devt ool fetches the specified Git repository, detects the code as Node.js code, fetches dependencies using
npm, and sets SRC__URT accordingly.

2.6. Working With Recipes
When building a recipe using the devtool build command, the typical build progresses as follows:
1. Fetch the source
2. Unpack the source
3. Configure the source
4. Compile the source
5. Install the build output
6. Package the installed output

For recipes in the workspace, fetching and unpacking is disabled as the source tree has already been prepared and is persistent.
Each of these build steps is defined as a function (task), usually with a "do_" prefix (e.g. do_fetch, do _unpack, and so
forth). These functions are typically shell scripts but can instead be written in Python.

If you look at the contents of a recipe, you will see that the recipe does not include complete instructions for building the
software. Instead, common functionality is encapsulated in classes inherited with the inher it directive. This technique
leaves the recipe to describe just the things that are specific to the software being built. A base class exists that is implicitly
inherited by all recipes and provides the functionality that most recipes typically need.

The remainder of this section presents information useful when working with recipes.

2.6.1. Finding Logs and Work Files{

After the first run of the devtool build command, recipes that were previously created using the devtool add
command or whose sources were modified using the devtool modi fy command contain symbolic links created within
the source tree:

. oe—logs: This link points to the directory in which log files and run scripts for each build step are created.

e Ooe—-workdir: This link points to the temporary work area for the recipe. The following locations under oe—-workdir
are particularly useful:

o 1mage/: Contains all of the files installed during the do_install stage. Within a recipe, this directory is referred
to by the expression ${D}.

o sysroot-destdir/: Contains a subset of files installed within do_install that have been put into the
shared sysroot. For more information, see the "Sharing_Files Between Recipes" section.

° packages—split/: Contains subdirectories for each package produced by the recipe. For more information, see
the "Packaging" section.

You can use these links to get more information on what is happening at each build step.

2.6.2. Setting Configure Argumentsq

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 19/51

http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-SRC_URI
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#ref-tasks-fetch
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#ref-tasks-unpack
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#ref-classes-base
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#ref-tasks-install
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-D

3/4/2020

Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

If the software your recipe is building uses GNU autoconf, then a fixed set of arguments is passed to it to enable cross-
compilation plus any extras specified by EXTRA OECONE or PACKAGECONEFTIG CONFARGS set within the recipe. If
you wish to pass additional options, add them to EXTRA OECONEF or PACKAGECONFIG CONFARGS. Other
supported build tools have similar variables (e.g. EXTRA OFCMAKE for CMake, EXTRA OESCONS for Scons, and so
forth). If you need to pass anything on the make command line, you can use EXTRA OEMAKE or the
PACKAGECONEFTIG _CONFARGS variables to do so.

You can use the devtool configure-help command to help you set the arguments listed in the previous
paragraph. The command determines the exact options being passed, and shows them to you along with any custom arguments
specified through EXTRA OECONF or PACKAGECONFIG CONFARGS. If applicable, the command also shows you
the output of the configure script's "--help" option as a reference.

2.6.3. Sharing Files Between Recipes|

Recipes often need to use files provided by other recipes on the build host. For example, an application linking to a common
library needs access to the library itself and its associated headers. The way this access is accomplished within the extensible
SDK is through the sysroot. One sysroot exists per "machine" for which the SDK is being built. In practical terms, this means a
sysroot exists for the target machine, and a sysroot exists for the build host.

Recipes should never write files directly into the sysroot. Instead, files should be installed into standard locations during the
do_install task within the S{D} directory. A subset of these files automatically goes into the sysroot. The reason for
this limitation is that almost all files that go into the sysroot are cataloged in manifests in order to ensure they can be removed
later when a recipe is modified or removed. Thus, the sysroot is able to remain free from stale files.

2.6.4. Packaging(

Packaging is not always particularly relevant within the extensible SDK. However, if you examine how build output gets into the
final image on the target device, it is important to understand packaging because the contents of the image are expressed in
terms of packages and not recipes.

During the dO_package task, files installed during the do_install task are split into one main package, which is
almost always named the same as the recipe, and into several other packages. This separation exists because not all of those
installed files are useful in every image. For example, you probably do not need any of the documentation installed in a
production image. Consequently, for each recipe the documentation files are separated into a —dOC package. Recipes that
package software containing optional modules or plugins might undergo additional package splitting as well.

After building a recipe, you can see where files have gone by looking in the oe-workdir/packages-split
directory, which contains a subdirectory for each package. Apart from some advanced cases, the PACKAGES and FTILES
variables controls splitting. The PACKAGES variable lists all of the packages to be produced, while the FILES variable
specifies which files to include in each package by using an override to specify the package. For example, F I LE S_$ {PN}
specifies the files to go into the main package (i.e. the main package has the same name as the recipe and S {PN} evaluates
to the recipe name). The order of the PACKAGES value is significant. For each installed file, the first package whose FILES
value matches the file is the package into which the file goes. Defaults exist for both the PACKAGES and F'ILES variables.
Consequently, you might find you do not even need to set these variables in your recipe unless the software the recipe is
building installs files into non-standard locations.

2.7. Restoring the Target Device to its Original State(

If you use the devtool deploy-target command to write a recipe's build output to the target, and you are working
on an existing component of the system, then you might find yourself in a situation where you need to restore the original files
that existed prior to running the devtool deploy-target command. Because the devtool deploy-
target command backs up any files it overwrites, you can use the devtool undeploy-target command to
restore those files and remove any other files the recipe deployed. Consider the following example:

$ devtool undeploy-target lighttpd root@192.168.7.2

If you have deployed multiple applications, you can remove them all using the "-a" option thus restoring the target device to its
original state:

$ devtool undeploy-target -a root@192.168.7.2

Information about files deployed to the target as well as any backed up files are stored on the target itself. This storage, of
course, requires some additional space on the target machine.

Note

The devtool deploy-target anddevtool undeploy-target commands do
not currently interact with any package management system on the target device (e.g. RPM or OPKG).
Consequently, you should not intermingle devtool deploy-target and package manager
operations on the target device. Doing so could result in a conflicting set of files.

2.8. Installing Additional Iltems Into the Extensible SDKY|

Out of the box the extensible SDK typically only comes with a small number of tools and libraries. A minimal SDK starts mostly
empty and is populated on-demand. Sometimes you must explicitly install extra items into the SDK. If you need these extra

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html

20/51

http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-EXTRA_OECONF
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-PACKAGECONFIG_CONFARGS
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-EXTRA_OECMAKE
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-EXTRA_OESCONS
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-PACKAGECONFIG_CONFARGS
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#hardware-build-system-term
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#ref-tasks-install
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-D
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#ref-tasks-package
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#ref-tasks-install
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-PACKAGES
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-FILES
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-PN

3/4/2020

Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

items, you can first search for the items using the devtool search command. For example, suppose you need to link to
libGL but you are not sure which recipe provides libGL. You can use the following command to find out:

$ devtool search 1ibGL
mesa A free implementation of the OpenGL API
Once you know the recipe (i.e. mesa in this example), you can install it:

$ devtool sdk-install mesa

By default, the devtool sdk-install command assumes the item is available in pre-built form from your SDK
provider. If the item is not available and it is acceptable to build the item from source, you can add the "-s" option as follows:

$ devtool sdk-install -s mesa

It is important to remember that building the item from source takes significantly longer than installing the pre-built artifact.
Also, if no recipe exists for the item you want to add to the SDK, you must instead add the item using the devtool add
command.

2.9. Applying Updates to an Installed Extensible SDKY|

If you are working with an installed extensible SDK that gets occasionally updated (e.g. a third-party SDK), then you will need to
manually "pull down" the updates into the installed SDK.

To update your installed SDK, use devt ool as follows:

$ devtool sdk-update

The previous command assumes your SDK provider has set the default update URL for you through the SDK_UPDATE_URL
variable as described in the "Providing_Updates to the Extensible SDK After Installation" section. If the SDK provider has not set
that default URL, you need to specify it yourself in the command as follows:

$ devtool sdk-update path_to_update_directory

Note

The URL needs to point specifically to a published SDK and not to an SDK installer that you would
download and install.

2.10. Creating a Derivative SDK With Additional Componentsq

You might need to produce an SDK that contains your own custom libraries. A good example would be if you were a vendor with
customers that use your SDK to build their own platform-specific software and those customers need an SDK that has custom
libraries. In such a case, you can produce a derivative SDK based on the currently installed SDK fairly easily by following these
steps:

1. If necessary, install an extensible SDK that you want to use as a base for your derivative SDK.

2. Source the environment script for the SDK.

3. Add the extra libraries or other components you want by using the devtool add command.
4. Run the devtool build-sdk command.

The previous steps take the recipes added to the workspace and construct a new SDK installer that contains those recipes and
the resulting binary artifacts. The recipes go into their own separate layer in the constructed derivative SDK, which leaves the
workspace clean and ready for users to add their own recipes.

Chapter 3. Using the Standard SDK{]

Table of Contents

3.1. Why use the Standard SDK and What is in It?
3.2. Installing_the SDK
3.3. Running_the SDK Environment Setup Script

This chapter describes the standard SDK and how to install it. Information includes unique installation and setup aspects for the
standard SDK.

Note

For a side-by-side comparison of main features supported for a standard SDK as compared to an
extensible SDK, see the "Introduction" section.

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 21/51

http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-SDK_UPDATE_URL

3/4/2020 Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

You can use a standard SDK to work on Makefile, Autotools, and Eclipse™-based projects. See the "Using_the SDK Toolchain
Directly" chapter for more information.

3.1. Why use the Standard SDK and What is in It?

The Standard SDK provides a cross-development toolchain and libraries tailored to the contents of a specific image. You would
use the Standard SDK if you want a more traditional toolchain experience as compared to the extensible SDK, which provides an
internal build system and the devt ool functionality.

The installed Standard SDK consists of several files and directories. Basically, it contains an SDK environment setup script, some
configuration files, and host and target root filesystems to support usage. You can see the directory structure in the "Installed
Standard SDK Directory Structure" section.

3.2. Installing the SDKY|

The first thing you need to do is install the SDK on your Build Host by running the * . sh installation script.

You can download a tarball installer, which includes the pre-built toolchain, the rungemu script, and support files from the
appropriate toolchain directory within the Index of Releases. Toolchains are available for several 32-bit and 64-bit architectures
with the x86 64 directories, respectively. The toolchains the Yocto Project provides are based off the COre—image-
satoand core-image-minimal images and contain libraries appropriate for developing against that image.

The names of the tarball installer scripts are such that a string representing the host system appears first in the filename and
then is immediately followed by a string representing the target architecture.

poky-glibc-host_system-image_type-arch-toolchain-release_version.sh

Where:
host_system is a string representing your development system:

i686 or x86_64.
image_type is the image for which the SDK was built:
core-image-minimal or core-image-sato.
arch is a string representing the tuned target architecture:
aarch64, armv5e, core2-64, i586, mips32r2, mips64, ppc7400, or cortexa8hf-neon.
release_version is a string representing the release number of the Yocto Project:
2.5, 2.5+snapshot
For example, the following SDK installer is for a 64-bit development host system and a i586-tuned target architecture based off
the SDK for core—image—sato and using the current 2.5 snapshot:

poky-glibc-x86_64-core-image-sato-i586-toolchain-2.5.sh

Note

As an alternative to downloading an SDK, you can build the SDK installer. For information on building
the installer, see the "Building_an SDK Installer" section. Another helpful resource for building an
installer is the Cookbook guide to Making_an Eclipse Debug_Capable Image wiki page. This wiki page
focuses on development when using the Eclipse IDE.

The SDK and toolchains are self-contained and by default are installed into the PO ky_sdk folder in your home directory. You
can choose to install the extensible SDK in any location when you run the installer. However, because files need to be written
under that directory during the normal course of operation, the location you choose for installation must be writable for
whichever users need to use the SDK.

The following command shows how to run the installer given a toolchain tarball for a 64-bit x86 development host system and a
64-bit x86 target architecture. The example assumes the SDK installer is located in ~/Downloads/ and has execution
rights.

Note

If you do not have write permissions for the directory into which you are installing the SDK, the
installer notifies you and exits. For that case, set up the proper permissions in the directory and run
the installer again.

$./Downloads/poky-glibc-x86_64-core-image-sato-i586-toolchain-2.5.sh
Poky (Yocto Project Reference Distro) SDK installer version 2.5

Enter target directory for SDK (default: /opt/poky/2.5):
You are about to install the SDK to "/opt/poky/2.5". Proceed[Y/n]? Y

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 22/51

http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#hardware-build-system-term
http://downloads.yoctoproject.org/releases/yocto/yocto-2.5/toolchain/
https://wiki.yoctoproject.org/wiki/TipsAndTricks/RunningEclipseAgainstBuiltImage

3/4/2020 Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

EXTPACTING SDK .t vttt et tiee e etee e etieeeaneeaneeannns taneeanneeennneeennesennneesns done

Setting it up...done

SDK has been successfully set up and is ready to be used.

Each time you wish to use the SDK in a new shell session, you need to source the environment setup script e.g.
$. /opt/poky/2.5/environment-setup-i586-poky-1linux

Again, reference the "Installed Standard SDK Directory Structure" section for more details on the resulting directory structure of
the installed SDK.

3.3. Running the SDK Environment Setup Script|

Once you have the SDK installed, you must run the SDK environment setup script before you can actually use the SDK. This
setup script resides in the directory you chose when you installed the SDK, which is either the default /Opt /po ky/2 .5
directory or the directory you chose during installation.

Before running the script, be sure it is the one that matches the architecture for which you are developing. Environment setup
scripts begin with the string "envi ronment-setup" and include as part of their name the tuned target architecture. As
an example, the following commands set the working directory to where the SDK was installed and then source the environment
setup script. In this example, the setup script is for an IA-based target machine using i586 tuning:

$ source /opt/poky/2.5/environment-setup-i586-poky-1linux

When you run the setup script, the same environment variables are defined as are when you run the setup script for an
extensible SDK. See the "Running_the Extensible SDK Environment Setup Script" section for more information.

Chapter 4. Using the SDK Toolchain Directlyq

Table of Contents

4.1. Autotools-Based Projects
4.2. Makefile-Based Projects

You can use the SDK toolchain directly with Makefile, Autotools, and Eclipse™-based projects. This chapter covers the first two,
while the "Developing_Applications Using_Eclipse™" Chapter covers the latter.

4.1. Autotools-Based Projects]|

Once you have a suitable cross-development toolchain installed, it is very easy to develop a project using the GNU Autotools-
based workflow, which is outside of the OpenEmbedded build system.

The following figure presents a simple Autotools workflow.

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 23/51

http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#cross-development-toolchain
https://en.wikipedia.org/wiki/GNU_Build_System
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#build-system-term

3/4/2020 Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

[] @

Working Directo.
In the Warking Directory, Create ng v

Files Needed for the Project
Installed SDK
project.c
1 I @ configure.ac M
Makefile.am
% source 5DK_env_setup script README

. @ project.c

. README
configure.ac
$ Makefile.am

% autoreconf

aclocal configure
autoconf -e4—= adocal.md
automake Makefile.am

\
Makefile.in M
v @

$ _jconfigure ${CONFIGURE FLAGS}

i

@ Makefile M

% make

% make install

Ll ®

% fproject on the Target

Follow these steps to create a simple Autotools-based "Hello World" project:

Note

For more information on the GNU Autotools workflow, see the same example on the GNOME Developer
site.

1. Create a Working Directory and Populate It: Create a clean directory for your project and then make that directory
your working location.

$ mkdir $HOME/helloworld
$ cd $HOME/helloworld

After setting up the directory, populate it with files needed for the flow. You need a project source file, a file to help with
configuration, and a file to help create the Makefile, and a README file: hello.c, configure.ac,
Makefile.am, and README, respectively.

Use the following command to create an empty README file, which is required by GNU Coding Standards:

$ touch README

Create the remaining three files as follows:
e« hello.c:
#include <stdio.h>
main()
printf("Hello World!\n");

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 24/51

https://developer.gnome.org/anjuta-build-tutorial/stable/create-autotools.html.en

3/4/2020 Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

« configure. ac:

AC_INIT(hello,®.1)
AM_INIT_AUTOMAKE ([foreign])
AC_PROG_CC
AC_CONFIG_FILES(Makefile)
AC_OUTPUT

e Makefile.am:

bin_PROGRAMS = hello
hello_SOURCES = hello.c

2. Source the Cross-Toolchain Environment Setup File: As described earlier in the manual, installing the cross-
toolchain creates a cross-toolchain environment setup script in the directory that the SDK was installed. Before you can
use the tools to develop your project, you must source this setup script. The script begins with the string "environment-
setup" and contains the machine architecture, which is followed by the string "poky-linux". For this example, the
command sources a script from the default SDK installation directory that uses the 32-bit Intel x86 Architecture and the
Sumo Yocto Project release:

$ source /opt/poky/2.5/environment-setup-i586-poky-1linux

3. Create the configure Script: Use the autoreconf command to generate the configure script.

$ autoreconf

The autoreconft tool takes care of running the other Autotools such as aclocal, autoconf, and
automake.

Note

If you get errors from configure.ac, which autoreconf runs, that indicate

missing files, you can use the "-i" option, which ensures missing auxiliary files are copied to the
build host.

4. Cross-Compile the Project: This command compiles the project using the cross-compiler. The
CONFIGURE _FTAGS environment variable provides the minimal arguments for GNU configure:

$./configure ${CONFIGURE_FLAGS}

For an Autotools-based project, you can use the cross-toolchain by just passing the appropriate host option to
Configure . sh. The host option you use is derived from the name of the environment setup script found in the
directory in which you installed the cross-toolchain. For example, the host option for an ARM-based target that uses the
GNU EABL is armvbte-poky—-linux-gnueabi. You will notice that the name of the script is
environment-setup-armvSte-poky-linux-gnuealbi. Thus, the following command works to
update your project and rebuild it using the appropriate cross-toolchain tools:

$./configure --host=armv5te-poky-linux-gnueabi --with-libtool-sysroot=sysroot_dir

5. Make and Install the Project: These two commands generate and install the project into the destination directory:

$ make
$ make install DESTDIR=./tmp

Note

To learn about environment variables established when you run the cross-toolchain
environment setup script and how they are used or overridden when the Makefile, see the
"Makefile-Based Projects" section.

This next command is a simple way to verify the installation of your project. Running the command prints the
architecture on which the binary file can run. This architecture should be the same architecture that the installed cross-
toolchain supports.

$ file ./tmp/usr/local/bin/hello
6. Execute Your Project: To execute the project, you would need to run it on your target hardware. If your target
hardware happens to be your build host, you could run the project as follows:

$./tmp/usr/local/bin/hello

As expected, the project displays the "Hello World!" message.

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 25/51

http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-CONFIGURE_FLAGS

3/4/2020

Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

4.2. Makefile-Based Projects(

Simple Makefile-based projects use and interact with the cross-toolchain environment variables established when you run the
cross-toolchain environment setup script. The environment variables are subject to general ma ke rules.

This section presents a simple Makefile development flow and provides an example that lets you see how you can use cross-
toolchain environment variables and Makefile variables during development.

In the Working Directory, Create
Header, Module, and Main Files

Working Directory

Installed SDK

main.c
? I @ header.h l;li

module.c
$ source SDK_env_setup_script

®

» Makefile | 4
Create Makefile "—‘i

main.c :

I f’ header.h
= $make

module.c

®

% ./project

The main point of this section is to explain the following three cases regarding variable behavior:

e Case 1 - No Variables Set in the Makefile Map to Equivalent Environment Variables Set in the SDK Setup
Script: Because matching variables are not specifically set in the Make f1i1e, the variables retain their values based on
the environment setup script.

e Case 2 - Variables Are Set in the Makefile that Map to Equivalent Environment Variables from the SDK Setup
Script: Specifically setting matching variables in the Make fi1e during the build results in the environment settings of the
variables being overwritten. In this case, the variables you set in the Makefi1le are used.

e Case 3 - Variables Are Set Using the Command Line that Map to Equivalent Environment Variables from the SDK
Setup Script: Executing the Makefi1le from the command line results in the environment variables being overwritten. In
this case, the command-line content is used.

Note

Regardless of how you set your variables, if you use the "-e" option with make, the variables from
the SDK setup script take precedence:

$ make -e target

The remainder of this section presents a simple Makefile example that demonstrates these variable behaviors.

In a new shell environment variables are not established for the SDK until you run the setup script. For example, the following
commands show a null value for the compiler variable (i.e. CC).

$ echo ${CC}

$

Running the SDK setup script for a 64-bit build host and an i586-tuned target architecture for a CO re—image—sato
image using the current 2.5 Yocto Project release and then echoing that variable shows the value established through the script:

$ source /opt/poky/2.5/environment-setup-i586-poky-1linux

$ echo ${cC}
i1586-poky-linux-gcc -m32 -march=1i586 --sysroot=/opt/poky/2.5/sysroots/i586-poky-1linux

To illustrate variable use, work through this simple "Hello World!" example:

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 26/51

http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-CC

3/4/2020

Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

1. Create a Working Directory and Populate It: Create a clean directory for your project and then make that directory

your working location.

$ mkdir $HOME/helloworld
$ cd $HOME/helloworld

After setting up the directory, populate it with files needed for the flow. You need a main . c file from which you call
your function, a module . h file to contain headers, and a module . C that defines your function.

Create the three files as follows:

e main.c:

#include "module.h"
void sample_func();
int main()
{
sample_func();
return 9;

« module. h:

#include <stdio.h>
void sample_func();

« module.c:

#include "module.h"

void sample_func()

{
printf(“Hello World!");
printf("\n");

2. Source the Cross-Toolchain Environment Setup File: As described earlier in the manual, installing the cross-

w

toolchain creates a cross-toolchain environment setup script in the directory that the SDK was installed. Before you can
use the tools to develop your project, you must source this setup script. The script begins with the string "environment-
setup" and contains the machine architecture, which is followed by the string "poky-linux". For this example, the
command sources a script from the default SDK installation directory that uses the 32-bit Intel x86 Architecture and the
Sumo Yocto Project release:

$ source /opt/poky/2.5/environment-setup-i586-poky-linux

Create the Makefile: For this example, the Makefile contains two lines that can be used to set the CC variable.
One line is identical to the value that is set when you run the SDK environment setup script, and the other line sets CC
to "gcc", the default GNU compiler on the build host:

CC=1586-poky-linux-gcc -m32 -march=1i586 --sysroot=/opt/poky/2.5/sysroots/i586-poky-1linux
CC="gcc"
all: main.o module.o
${CC} main.o module.o -o target_bin
main.o: main.c module.h
${CC} -I . -c main.c
module.o: module.c module.h
${CC} -I . -c module.c
clean:
rm -rf *.o0
rm target_bin

. Make the Project: Use the ma ke command to create the binary output file. Because variables are commented out in

the Makefile, the value used for CC is the value set when the SDK environment setup file was run:
$ make
i586-poky-linux-gcc -m32 -march=i586 --sysroot=/opt/poky/2.5/sysroots/i586-poky-linux -I . -c main.c

i1586-poky-linux-gcc -m32 -march=i586 --sysroot=/opt/poky/2.5/sysroots/i586-poky-linux -I . -c module.c
i1586-poky-linux-gcc -m32 -march=i586 --sysroot=/opt/poky/2.5/sysroots/i586-poky-linux main.o module.o -o t

< >

From the results of the previous command, you can see that the compiler used was the compiler established through the
CC variable defined in the setup script.

You can override the CC environment variable with the same variable as set from the Makefile by uncommenting the line
in the Makefile and running ma ke again.

$ make clean

rm -rf *.o0

rm target_bin

#

Edit the Makefile by uncommenting the line that sets CC to "gcc"
#

$ make

gcc -I . -c main.c

gcc -I . -c module.c

gcc main.o module.o -o target_bin

As shown in the previous example, the cross-toolchain compiler is not used. Rather, the default compiler is used.

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html

27/51

Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

This next case shows how to override a variable by providing the variable as part of the command line. Go into the

Makefile and re-insert the comment character so that running ma ke uses the established SDK compiler.
you run make, use a command-line argument to set CC to "gcc":

$ make clean

rm -rf *.o

rm target_bin

#

Edit the Makefile to comment out the line setting CC to "gcc"

#

$ make

i1586-poky-linux-gcc -m32 -march=1i586 --sysroot=/opt/poky/2.5/sysroots/i586-poky-linux -I
i586-poky-linux-gcc -m32 -march=1i586 --sysroot=/opt/poky/2.5/sysroots/i586-poky-linux -I

$ make clean

rm -rf *.0

rm target_bin

$ make CC="gcc"

gcc -I . -c main.c

gcc -I . -c module.c

gcc main.o module.o -o target_bin

<

In the previous case, the command-line argument overrides the SDK environment variable.

However, when

. -c main.c
. -c module.c
i1586-poky-linux-gcc -m32 -march=1i586 --sysroot=/opt/poky/2.5/sysroots/i586-poky-linux main.o module.o -o t

In this last case, edit Makefile again to use the "gcc" compiler but then use the "-e" option on the make command line:

$ make clean
rm -rf *.o0
rm target_bin

#

Edit the Makefile to use "gcc"
#

$ make

gcc -I . -c main.c

gcc -I . -c module.c

gcc main.o module.o -o target_bin
$ make clean

rm -rf *.o0

rm target_bin

$ make -e

i1586-poky-linux-gcc -m32 -march=i586 --sysroot=/opt/poky/2.5/sysroots/i586-poky-linux -I . -c main.c
i1586-poky-linux-gcc -m32 -march=i586 --sysroot=/opt/poky/2.5/sysroots/i586-poky-linux -I . -c module.c
i1586-poky-linux-gcc -m32 -march=i586 --sysroot=/opt/poky/2.5/sysroots/i586-poky-linux main.o module.o -o t

<

»

In the previous case, the "-e" option forces ma ke to use the SDK environment variables regardless of the values in the

Makefile.

5. Execute Your Project: To execute the project (i.e. target_bin), use the following command:

$./target_bin
Hello World!

Note

If you used the cross-toolchain compiler to build target_bin and your build host differs

in architecture from that of the target machine, you need to run your project on the target
device.

As expected, the project displays the "Hello World!" message.

Chapter 5. Developing Applications Using Eclipse ™|

Table of Contents

5.1. Application Development Workflow Using_Eclipse™
5.2. Working Within Eclipse
5.2.1. Setting_Up the Oxygen Version of the Eclipse IDE
5. Creating_the Project
5. Configuring_the Cross-Toolchains
5. Building_the Project
5. Starting_ QEMU in User-Space NFS Mode
5.
5.

Deploying_and Debugging_the Application
Using_Linuxtools

N [N IND (N [N [N
N O (U7 A (W N

If you are familiar with the popular Eclipse IDE, you can use an Eclipse Yocto Plug-in to allow you to develop, deploy, and test
your application all from within Eclipse. This chapter describes general workflow using the SDK and Eclipse and how to configure

and set up Eclipse.

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html

28/51

3/4/2020 Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

Notes

e This chapter assumes development of applications on top of an image prepared using the Yocto
Project. As such, inclusion of a pre-built image or the building of an image is included in the

workflow.
e The chapter also assumes development on a build host that is set up to use the Yocto Project.

Realize that you can easily use Eclipse and the Yocto Project plug-in to develop an application for
any number of images developed and tested on different machines.

5.1. Application Development Workflow Using Eclipse ™|

The following figure and supporting list summarize a general workflow for application development that uses the SDK within the
Eclipse IDE. The application developed runs on top of an image created using the Yocto Project.

@ Current Limux

Prepare Host System for the Yocto Project Distribuion
Required Packages

Secure the Linux Yocto Kemel Target Image ‘

o

=

I -y, £

Secure the Target Root Index of
Install the SDK Flesystem and Cross- Downloads
Toolchain

A

— = : Create and Build Application

Deploy the Image with the Application

3

QEMU
Target Ernulator
Hardware
’ @ Test and Debug the Application

1. Prepare the Host System for the Yocto Project: Because this example workflow assumes development on a system
set up to use the Yocto Project, you need to be sure your build host can use the Yocto Project. See the "Preparing_a Build
Host" section in the Yocto Project Development Tasks Manual for information on how to set up your build host.

Note

by Eclipse.

2. Secure the Yocto Project Kernel Target Image: This example workflow assumes application development on top of
an image built using the Yocto Project. Depending on whether you are using a pre-built image that matches your target
architecture or you are using an image you build using the OpenEmbedded Build System and where you are going to run
the image while you develop your application (QEMU or real hardware), the area from which you get the image differs.

o Download the image from machines if your target architecture is supported and you are going to develop and
test your application on actual hardware.

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 29/51

http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#hardware-build-system-term
http://www.yoctoproject.org/docs/2.5/dev-manual/dev-manual.html#setting-up-the-development-host-to-use-the-yocto-project
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#required-packages-for-the-host-development-system
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#build-system-term
http://downloads.yoctoproject.org/releases/yocto/yocto-2.5/machines

3/4/2020

Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

o Download the image from machines/ gemu if your target architecture is supported and you are going to
develop and test your application using the QEMU Emulator.

e Build your image if you cannot find a pre-built image that matches your target architecture. If your target architecture
is similar to a supported architecture, you can modify the kernel image before you build it. See the "Using
devtool to Patch the Kernel" section in the Yocto Project Linux Kernel Development Manual for an example. You
can also see the "Making_a Suitable Qemux86 Image" wiki for steps needed to build an image suitable for QEMU and
for debugging within the Eclipse IDE.

3. Install the SDK: The SDK provides a target-specific cross-development toolchain, the root filesystem, the QEMU
emulator, and other tools that can help you develop your application. For information on how to install the SDK, see the
"Installing_the SDK" section.

4. Secure the Target Root Filesystem and the Cross-Development Toolchain: You need to find and download the
appropriate root filesystem and the cross-development toolchain.

You can find the tarballs for the root filesystem in the same area used for the kernel image. Depending on the type of
image you are running, the root filesystem you need differs. For example, if you are developing an application that runs
on an image that supports Sato, you need to get a root filesystem that supports Sato.

You can find the cross-development toolchains at toolchains. Be sure to get the correct toolchain for your
development host and your target architecture. See the "Locating_Pre-Built SDK Installers" section for information and
the "Installing_the SDK" section for installation information.

Note

As an alternative to downloading an SDK, you can build the SDK installer. For information on
building the installer, see the "Building_an SDK Installer" section. Another helpful resource for

page.

Create and Build Your Application: You need to have source files for your application. Once you have the files, you
can use the Eclipse IDE to import them and build the project.

wu

o

Deploy the Image With the Application: Using the Eclipse IDE, you can deploy your image to the hardware or to
QEMU through the project's preferences. You can also use Eclipse to load and test your image under QEMU. See the

QEMU.

N

Test and Debug the Application: Once your application is deployed, you need to test it. Within the Eclipse IDE, you
can use the debugging environment along with supported performance enhancing Linux Tools.

5.2. Working Within Eclipsef
The Eclipse IDE is a popular development environment and it fully supports development using the Yocto Project.

When you install and configure the Eclipse Yocto Project Plug-in into the Eclipse IDE, you maximize your Yocto Project
experience. Installing and configuring the Plug-in results in an environment that has extensions specifically designed to let you
more easily develop software. These extensions allow for cross-compilation, deployment, and execution of your output into a
QEMU emulation session as well as actual target hardware. You can also perform cross-debugging and profiling. The
environment also supports performance enhancing tools that allow you to perform remote profiling, tracing, collection of power
data, collection of latency data, and collection of performance data.

Note

This release of the Yocto Project supports both the Oxygen and Neon versions of the Eclipse IDE. This
section provides information on how to use the Oxygen release with the Yocto Project. For information
on how to use the Neon version of Eclipse with the Yocto Project, see "Appendix D".

5.2.1. Setting Up the Oxygen Version of the Eclipse IDE(

To develop within the Eclipse IDE, you need to do the following:

1. Install the Oxygen version of the Eclipse IDE.
2. Configure the Eclipse IDE.
3. Install the Eclipse Yocto Plug-in.

4. Configure the Eclipse Yocto Plug-in.

Note

Do not install Eclipse from your distribution's package repository. Be sure to install Eclipse from the
official Eclipse download site as directed in the next section.

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html

30/51

http://downloads.yoctoproject.org/releases/yocto/yocto-2.5/machines/qemu
http://www.yoctoproject.org/docs/2.5/dev-manual/dev-manual.html#dev-manual-qemu
http://www.yoctoproject.org/docs/2.5/kernel-dev/kernel-dev.html#using-devtool-to-patch-the-kernel
https://wiki.yoctoproject.org/wiki/TipsAndTricks/RunningEclipseAgainstBuiltImage#Making_a_Suitable_Qemux86_Image
http://downloads.yoctoproject.org/releases/yocto/yocto-2.5/toolchain/
https://wiki.yoctoproject.org/wiki/TipsAndTricks/RunningEclipseAgainstBuiltImage
http://www.yoctoproject.org/docs/2.5/dev-manual/dev-manual.html#dev-manual-qemu
http://www.eclipse.org/linuxtools/
http://www.eclipse.org/linuxtools/

3/4/2020 Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

5.2.1.1. Installing the Oxygen Eclipse IDE|

Follow these steps to locate, install, and configure Oxygen Eclipse:

1. Locate the Oxygen Download: Open a browser and go to http://www.eclipse.org/oxygen/.

2. Download the Tarball: Click through the "Download" buttons to download the file.

3. Unpack the Tarball: Move to a clean directory and unpack the tarball. Here is an example:
$ cd ~
$ tar -xzvf ~/Downloads/eclipse-inst-linux64.tar.gz

Everything unpacks into a folder named "eclipse-installer".

4. Launch the Installer: Use the following commands to launch the installer:
$ cd ~/eclipse-installer
$./eclipse-inst

5. Select Your IDE: From the list, select the "Eclipse IDE for C/C++ Developers".

6. Install the Software: Click "Install" to begin the installation. Accept all the certificates and any license agreements.
Click "Install" again to finish the installation.

7. Launch Oxygen: Accept the default "workspace" and click the "Launch" button. You should see the Eclipse welcome
page from which can click "workbench" to enter your workspace.

Note

The executable for Eclipse is located in the eclipse/cpp-oxygen/eclipse

folder. To launch Eclipse outside of the installation process, simply execute that binary. Here is
an example:

$ ~/eclipse/cpp-oxygen/eclipse/eclipse

5.2.1.2. Configuring the Oxygen Eclipse IDE]|

Follow these steps to configure the Oxygen Eclipse IDE.

Notes

e Depending on how you installed Eclipse and what you have already done, some of the options do
not appear. If you cannot find an option as directed by the manual, it has already been installed.

o If you want to see all options regardless of whether they are installed or not, deselect the "Hide
items that are already installed" check box.

1. Be sure Eclipse is running and you are in your workbench. Just click "workbench" if you are not in your default
workspace.

2. Select "Install New Software" from the "Help" pull-down menu.
3. Select "Oxygen - http://download.eclipse.org/releases/oxygen" from the "Work with:" pull-down menu.
4. Expand the box next to "Linux Tools" and select the following:
C/C++ Remote (Over TCF/TE) Run/Debug Launcher
TM Terminal
5. Expand the box next to "Mobile and Device Development" and select the following boxes:
C/C++ Remote (Over TCF/TE) Run/Debug Launcher
Remote System Explorer User Actions
T™M Terminal
TCF Remote System Explorer add-in
TCF Target Explorer

6. Expand the box next to "Programming Languages" and select the following box:

C/C++ Development Tools SDK

7. Complete the installation by clicking through appropriate "Next" and "Finish" buttons and then restart the Eclipse IDE.

5.2.1.3. Installing or Accessing the Oxygen Eclipse Yocto Plug-in{

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 31/51

http://www.eclipse.org/oxygen/

3/4/2020

Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

You can install the Eclipse Yocto Plug-in into the Eclipse IDE one of two ways: use the Yocto Project's Eclipse Update site to
install the pre-built plug-in, or build and install the plug-in from the latest source code.

5.2.1.3.1. Installing the Pre-built Plug-in from the Yocto Project Eclipse Update Sitef|

To install the Oxygen Eclipse Yocto Plug-in from the update site, follow these steps:
1. Start up the Eclipse IDE.
2. In Eclipse, select "Install New Software" from the "Help" menu.
3. Click "Add..." in the "Work with:" area.

4. Enter http://downloads.yoctoproject.org/releases/eclipse-
plugin/2.5/0oxygen inthe URL field and provide a meaningful name in the "Name" field.

5. Click "OK" to have the entry automatically populate the "Work with:" field and to have the items for installation appear in

the window below.
6. Check the boxes next to the following:

Yocto Project SDK Plug-in
Yocto Project Documentation plug-in

7. Complete the remaining software installation steps and then restart the Eclipse IDE to finish the installation of the plug-

in.

Note

You can click "OK" when prompted about installing software that contains unsigned content.

5.2.1.3.2. Installing the Plug-in Using the Latest Source Codef

To install the Oxygen Eclipse Yocto Plug-in from the latest source code, follow these steps:

1. Be sure your build host has JDK version 1.8 or greater. On a Linux build host you can determine the version using the

following command:

$ java -version

2. Install X11-related packages:

$ sudo apt-get install xauth

3. In a new terminal shell, create a Git repository with:

$ cd ~

$ git clone git://git.yoctoproject.org/eclipse-yocto
4. Use Git to create the correct tag:

$ cd ~/eclipse-yocto
$ git checkout -b oxygen/sumo remotes/origin/oxygen/sumo

This creates a local tag named OXygen/sumo based on the branch origin/oxygen/sumo. You are put

into a detached HEAD state, which is fine since you are only going to be building and not developing.

5. Change to the scripts directory within the Git repository:

$ cd scripts

6. Set up the local build environment by running the setup script:

$./setup.sh

When the script finishes execution, it prompts you with instructions on how to run the build. sh script, which is also

in the Scripts directory of the Git repository created earlier.

7. Run the build. sh script as directed. Be sure to provide the tag name, documentation branch, and a release name.

Following is an example:

$ ECLIPSE_HOME=/home/scottrif/eclipse-yocto/scripts/eclipse ./build.sh -1 oxygen/sumo master yocto-2.5 2>&1

<

The previous example command adds the tag you need for oxygen/sumo to HEAD, then tells the build script to

use the local (-1) Git checkout for the build. After running the script, the file 0rg.yocto.sdk—release—date—
archive.zip isin the current directory.

8. If necessary, start the Eclipse IDE and be sure you are in the Workbench.

9. Select "Install New Software" from the "Help" pull-down menu.

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html

32/51

3/4/2020

10.

11.

12.

13.

14.

15.

16

Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

Click "Add".
Provide anything you want in the "Name" field.

Click "Archive" and browse to the ZIP file you built earlier. This ZIP file should not be "unzipped", and must be the
*archive. zip file created by running the build. sh script.

Click the "OK" button.

Check the boxes that appear in the installation window to install the following:
Yocto Project SDK Plug-in

Yocto Project Documentation plug-in

Finish the installation by clicking through the appropriate buttons. You can click "OK" when prompted about installing
software that contains unsigned content.

. Restart the Eclipse IDE if necessary.

At this point you should be able to configure the Eclipse Yocto Plug-in as described in the "Configuring_the Oxygen Eclipse Yocto
Plug-in" section.

5.2.1.4. Configuring the Oxygen Eclipse Yocto Plug-Inf|

Configuring the Oxygen Eclipse Yocto Plug-in involves setting the Cross Compiler options and the Target options. The

config
config

To sta
1

2

urations you choose become the default settings for all projects. You do have opportunities to change them later when you
ure the project (see the following section).

rt, you need to do the following from within the Eclipse IDE:
. Choose "Preferences" from the "Window" menu to display the Preferences Dialog.

. Click "Yocto Project SDK" to display the configuration screen.

The following sub-sections describe how to configure the plug-in.

Note

Throughout the descriptions, a start-to-finish example for preparing a QEMU image for use with Eclipse
is referenced as the "wiki" and is linked to the example on the "_Cookbook guide to Making_an Eclipse
Debug_Capable Image" wiki page.

5.2.1.4.1. Configuring the Cross-Compiler Options{

Cross
the ty

Compiler options enable Eclipse to use your specific cross compiler toolchain. To configure these options, you must select
pe of toolchain, point to the toolchain, specify the sysroot location, and select the target architecture.

e Selecting the Toolchain Type: Choose between "Standalone pre-built toolchain" and "Build system derived toolchain" for
Cross Compiler Options.

o Standalone Pre-built Toolchain: Select this type when you are using a stand-alone cross-toolchain. For example,

suppose you are an application developer and do not need to build a target image. Instead, you just want to use an
architecture-specific toolchain on an existing kernel and target root filesystem. In other words, you have downloaded and
installed a pre-built toolchain for an existing image.

o Build System Derived Toolchain: Select this type if you built the toolchain as part of the Build Directory. When you

select "Build system derived toolchain", you are using the toolchain built and bundled inside the Build Directory. For
example, suppose you created a suitable image using the steps in the wiki. In this situation, you would select "Build
system derived toolchain".

e Specify the Toolchain Root Location: If you are using a stand-alone pre-built toolchain, you should be pointing to where it

isi

nstalled (e.g. /Opt/poky/2.5). See the "Installing_the SDK" section for information about how the SDK is installed.

If you are using a build system derived toolchain, the path you provide for the "Toolchain Root Location" field is the Build

ectory from which you run the bitbake command (e.g /home/scottrif/poky/build).

Dir

For more information, see the "Building_an SDK Installer" section.

e Specify Sysroot Location: This location is where the root filesystem for the target hardware resides.

Thi

s location depends on where you separately extracted and installed the target filesystem when you either built it or

downloaded it.

As

Note

If you downloaded the root filesystem for the target hardware rather than built it, you must
download the sat o-sdk image in order to build any c/c++ projects.

an example, suppose you prepared an image using the steps in the wiki. If so, the MY QEMU ROOTF'S directory is

found in the Build Directory and you would browse to and select that directory (e.g.
/home/scottrif/poky/build/MY QEMU ROOTFS).

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html

33/51

https://wiki.yoctoproject.org/wiki/TipsAndTricks/RunningEclipseAgainstBuiltImage
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#build-directory
https://wiki.yoctoproject.org/wiki/TipsAndTricks/RunningEclipseAgainstBuiltImage
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#build-directory
https://wiki.yoctoproject.org/wiki/TipsAndTricks/RunningEclipseAgainstBuiltImage

3/4/2020

Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

For more information on how to install the toolchain and on how to extract and install the sysroot filesystem, see the
"Building_an SDK Installer" section.

Select the Target Architecture: The target architecture is the type of hardware you are going to use or emulate. Use the
pull-down "Target Architecture" menu to make your selection. The pull-down menu should have the supported architectures.
If the architecture you need is not listed in the menu, you will need to build the image. See the "Building_a Simple Image"
section of the Yocto Project Development Tasks Manual for more information. You can also see the wiki.

5.2.1.4.2. Configuring the Target Options{

You can choose to emulate hardware using the QEMU emulator, or you can choose to run your image on actual hardware.

e QEMU: Select this option if you will be using the QEMU emulator. If you are using the emulator, you also need to locate the

kernel and specify any custom options.

If you selected the Build system derived toolchain, the target kernel you built will be located in the Build Directory in
tmp/deploy/ images /machine directory. As an example, suppose you performed the steps in the wiki. In this
case, you specify your Build Directory path followed by the image (e.g.
/home/scottrif/poky/build/tmp/deploy/images/gemux86/bzImage-
gemux86.bin).

If you selected the standalone pre-built toolchain, the pre-built image you downloaded is located in the directory you
specified when you downloaded the image.

Most custom options are for advanced QEMU users to further customize their QEMU instance. These options are specified
between paired angled brackets. Some options must be specified outside the brackets. In particular, the options serial,
nographi c, and kvm must all be outside the brackets. Use the man gemu command to get help on all the options
and their use. The following is an example:

serial ‘<-m 256 -full-screen>’

Regardless of the mode, Sysroot is already defined as part of the Cross-Compiler Options configuration in the "Sysroot
Location:" field.

e External HW: Select this option if you will be using actual hardware.

Click "Apply and Close" to save your plug-in configurations.

5.2.2. Creating the Project(

You can create two types of projects: Autotools-based, or Makefile-based. This section describes how to create Autotools-based
projects from within the Eclipse IDE. For information on creating Makefile-based projects in a terminal window, see the
"Makefile-Based Projects" section.

Note

Do not use special characters in project names (e.g. spaces, underscores, etc.). Doing so can cause
configuration to fail.

To create a project based on a Yocto template and then display the source code, follow these steps:

1. Select "C/C++ Project" from the "File -> New" menu.

2. Select "C Managed Build" from the available options and click "Next".

3. Expand "Yocto Project SDK Autotools Project".

4. Select "Hello World ANSI C Autotools Projects". This is an Autotools-based project based on a Yocto template.
5. Put a name in the "Project name:" field. Do not use hyphens as part of the name (e.g. "hello").

6. Click "Next".

7. Add appropriate information in the various fields.

8. Click "Finish".

9. If the "open perspective" prompt appears, click "Yes" so that you in the C/C++ perspective.

10. The left-hand navigation pane shows your project. You can display your source by double clicking the project's source
file.

5.2.3. Configuring the Cross-Toolchains{

these settings for a given project by following these steps:

1. Select "Yocto Project Settings" from the "Project -> Properties" menu. This selection brings up the Yocto Project Settings
Dialog and allows you to make changes specific to an individual project.

By default, the Cross Compiler Options and Target Options for a project are inherited from settings you provided using
the Preferences Dialog as described earlier in the "Configuring_the Oxygen Eclipse Yocto Plug-in" section. The Yocto
Project Settings Dialog allows you to override those default settings for a given project.

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html

34/51

http://www.yoctoproject.org/docs/2.5/dev-manual/dev-manual.html#dev-building-a-simple-image
https://wiki.yoctoproject.org/wiki/TipsAndTricks/RunningEclipseAgainstBuiltImage
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#build-directory
https://wiki.yoctoproject.org/wiki/TipsAndTricks/RunningEclipseAgainstBuiltImage

3/4/2020

Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

2. Make or verify your configurations for the project and click "Apply and Close".

3. Right-click in the navigation pane and select "Reconfigure Project" from the pop-up menu. This selection reconfigures the
project by running Autotools GNU utility programs such as Autoconf, Automake, and so forth in the workspace for your
project. Click on the "Console" tab beneath your source code to see the results of reconfiguring your project.

5.2.4. Building the Project]

To build the project select "Build All" from the "Project" menu. The console should update and you can note the cross-compiler
you are using (i.e. 1586-poky-linux—gcc in this example).

Note

When building "Yocto Project SDK Autotools" projects, the Eclipse IDE might display error messages for
Functions/Symbols/Types that cannot be "resolved", even when the related include file is listed at the
project navigator and when the project is able to build. For these cases only, it is recommended to add
a new linked folder to the appropriate sysroot. Use these steps to add the linked folder:

—

. Select the project.

. Select "Folder" from the "File -> New" menu.

3. In the "New Folder" Dialog, click the "Advanced" button and then activate "Link to alternate

location (linked folder)" button.

. Click "Browse" to navigate to the include folder inside the same sysroot location selected in

the Yocto Project configuration preferences.

. Click "Finish" to save the linked folder.

5.2.5. Starting QEMU in User-Space NFS Modef|

To start the QEMU emulator from within Eclipse, follow these steps:

Note

See the "Using_the Quick EMUlator (QEMU)" chapter in the Yocto Project Development Tasks Manual for
more information on using QEMU.

1. Expose and select "External Tools Configurations ..." from the "Run -> External Tools" menu.

2. Locate and select your image in the navigation panel to the left (e.g. gemu_1586-poky-1linux).

3. Click "Run" to launch QEMU.

Note

The host on which you are running QEMU must have the rpclbind utility running to be able
to make RPC calls on a server on that machine. If QEMU does not invoke and you receive error
messages involving rpcbind, follow the suggestions to get the service running. As an
example, on a new Ubuntu 16.04 LTS installation, you must do the following in a new shell in
order to get QEMU to launch:

$ sudo apt-get install rpcbind

After installing rpcbind, you need to edit the /etc/init.d/rpcbind file to
include the following line:

OPTIONS="-i -w"

After modifying the file, you need to start the service:

$ sudo service portmap restart

4. If needed, enter your host root password in the shell window at the prompt. This sets up a Tap 0 connection needed
for running in user-space NFS mode.

5. Wait for QEMU to launch.

6. Once QEMU launches, you can begin operating within that environment. One useful task at this point would be to
determine the IP Address for the user-space NFS by using the ifconfig command. The IP address of the QEMU
machine appears in the xterm window. You can use this address to help you see which particular IP address the instance
of QEMU is using.

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html

35/51

https://en.wikipedia.org/wiki/GNU_Build_System
http://www.yoctoproject.org/docs/2.5/dev-manual/dev-manual.html#dev-manual-qemu

3/4/2020

5.2.6.

Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

Deploying and Debugging the Application{|

Once the QEMU emulator is running the image, you can deploy your application using the Eclipse IDE and then use the emulator
to perform debugging. Follow these steps to deploy the application.

10.

11.

12.

13.

14.

15.

Note

Currently, Eclipse does not support SSH port forwarding. Consequently, if you need to run or debug a
remote application using the host display, you must create a tunneling connection from outside Eclipse
and keep that connection alive during your work. For example, in a new terminal, run the following:

$ ssh -XY user_name@remote_host_ip

Using the above form, here is an example:

$ ssh -XY root@192.168.7.2

After running the command, add the command to be executed in Eclipse's run configuration before the
application as follows:

export DISPLAY=:10.0

Be sure to not destroy the connection during your QEMU session (i.e. do not exit out of or close that
shell).

. Select "Debug Configurations..." from the "Run" menu.
. In the left area, expand "C/C++Remote Application".
. Locate your project and select it to bring up a new tabbed view in the Debug Configurations Dialog.

. Click on the "Debugger" tab to see the cross-tool debugger you are using. Be sure to change to the debugger perspective

in Eclipse.

. Click on the "Main" tab.

. Create a new connection to the QEMU instance by clicking on "new".

. Select "SSH", which means Secure Socket Shell and then click "OK". Optionally, you can select a TCF connection instead.
. Clear out the "Connection name" field and enter any name you want for the connection.

. Put the IP address for the connection in the "Host" field. For QEMU, the default is "192.168.7.2". However, if a previous

QEMU session did not exit cleanly, the IP address increments (e.g. "192.168.7.3").

Note

You can find the IP address for the current QEMU session by looking in the xterm that opens
when you launch QEMU.

Enter "root", which is the default for QEMU, for the "User" field. Be sure to leave the password field empty.
Click "Finish" to close the New Connections Dialog.
If necessary, use the drop-down menu now in the "Connection" field and pick the IP Address you entered.

Assuming you are connecting as the root user, which is the default for QEMU x86-64 SDK images provided by the Yocto
Project, in the "Remote Absolute File Path for C/C++ Application" field, browse to /home /root /projectName (e.g.
/home/root/hello). You could also browse to any other path you have write access to on the target such as

/usr/bin. This location is where your application will be located on the QEMU system. If you fail to browse to and
specify an appropriate location, QEMU will not understand what to remotely launch. Eclipse is helpful in that it auto fills
your application name for you assuming you browsed to a directory.

Tips
e If you are prompted to provide a username and to optionally set a password, be sure you
provide "root" as the username and you leave the password field blank.

o If browsing to a directory fails or times out, but you can SSh into your QEMU or target
from the command line and you have proxies set up, it is likely that Eclipse is sending the
SSH traffic to a proxy. In this case, either use TCF , or click on "Configure proxy settings"
in the connection dialog and add the target IP address to the "bypass proxy" section. You
might also need to change "Active Provider" from Native to Manual.

Be sure you change to the "Debug" perspective in Eclipse.

Click "Debug"

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html

36/51

3/4/2020 Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

16. Accept the debug perspective.

5.2.7. Using Linuxtools{|

As mentioned earlier in the manual, performance tools exist (Linuxtools) that enhance your development experience. These
tools are aids in developing and debugging applications and images. You can run these tools from within the Eclipse IDE through
the "Linuxtools" menu.

For information on how to configure and use these tools, see http://www.eclipse.org/linuxtools/.

Appendix A. Obtaining the SDKY|

Table of Contents

A.1. Locating_Pre-Built SDK Installers

A.2. Building_an SDK Installer

A.3. Extracting_the Root Filesystem

A.4. Installed Standard SDK Directory Structure
A.5. Installed Extensible SDK Directory Structure

A.1. Locating Pre-Built SDK Installersq

You can use existing, pre-built toolchains by locating and running an SDK installer script that ships with the Yocto Project. Using
this method, you select and download an architecture-specific SDK installer and then run the script to hand-install the toolchain.

Follow these steps to locate and hand-install the toolchain:

1. Go to the Installers Directory: Go to http://downloads.yoctoproject.org/releases/yocto/yocto-2.5/toolchain/

2. Open the Folder for Your Build Host: Open the folder that matches your build host (i.e. 1686 for 32-bit machines or
x86 64 for 64-bit machines).

3. Locate and Download the SDK Installer: You need to find and download the installer appropriate for your build host,
target hardware, and image type.

The installer files (* . sh) follow this naming convention:
poky-glibc-host_system-core-image-type-arch-toolchain[-ext]-release.sh
Where:

host_system is a string representing your development system:

"i686" or "x86_64"

type is a string representing the image:
"sato" or "minimal"

arch is a string representing the target architecture:
"aarch64", "armv5e", "core2-64", "coretexa8hf-neon", "i586", "mips32r2",
"mips64", or "ppc7400"

release is the version of Yocto Project.

NOTE:

The standard SDK installer does not have the "-ext" string as
part of the filename.

The toolchains provided by the Yocto Project are based off of the CO re—image—sato and CO re—image—
minimal images and contain libraries appropriate for developing against those images.

For example, if your build host is a 64-bit x86 system and you need an extended SDK for a 64-bit core2 target, go into
the x86 64 folder and download the following installer:

poky-glibc-x86_64-core-image-sato-core2-64-toolchain-ext-2.5.sh

4. Run the Installer: Be sure you have execution privileges and run the installer. Following is an example from the
Downloads directory:

$ ~/Downloads/poky-glibc-x86_64-core-image-sato-core2-64-toolchain-ext-2.5.sh

During execution of the script, you choose the root location for the toolchain. See the "Installed Standard SDK Directory
Structure" section and the "Installed Extensible SDK Directory Structure" section for more information.

A.2. Building an SDK Installerq|

As an alternative to locating and downloading an SDK installer, you can build the SDK installer. Follow these steps:

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 37/51

http://www.eclipse.org/linuxtools/
http://downloads.yoctoproject.org/releases/yocto/yocto-2.5/toolchain/
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#build-system-term

3/4/2020 Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

1. Set Up the Build Environment: Be sure you are set up to use BitBake in a shell. See the "Preparing_the Build Host"
section in the Yocto Project Development Tasks Manual for information on how to get a build host ready that is either a
native Linux machine or a machine that uses CROPS.

2. Clone the poky Repository: You need to have a local copy of the Yocto Project Source Directory, (i.e. a local poky
repository). See the "Cloning_the POk v Repository" and possibly the "Checking_Out by Branch in Poky" and "Checking
Qut by Tag_in Poky" sections all in the Yocto Project Development Tasks Manual for information on how to clone the
po ky repository and check out the appropriate branch for your work.

3. Initialize the Build Environment: While in the root directory of the Source Directory (i.e. PO ky), run the oe—
init-build-env environment setup script to define the OpenEmbedded build environment on your build host.

$ source oe-init-build-env

Among other things, the script creates the Build Directory, which is bui 1d in this case and is located in the Source
Directory. After the script runs, your current working directory is set to the bui 1d directory.

4, Make Sure You Are Building an Installer for the Correct Machine: Check to be sure that your MACHINE variable
inthe Local . conf file in your Build Directory matches the architecture for which you are building.

5. Make Sure Your SDK Machine is Correctly Set: If you are building a toolchain designed to run on an architecture that
differs from your current development host machine (i.e. the build host), be sure that the SDKMACHTNE variable in
the local.conf file in your Build Directory is correctly set.

Note
If you are building an SDK installer for the Extensible SDK, the SDKMACHINE value must
be set for the architecture of the machine you are using to build the installer. If
SDKMACHINE is not set appropriately, the build fails and provides an error message similar
to the following:

The extensible SDK can currently only be built for the same architecture as the mac|

set to 1686 (likely via setting SDKMACHINE) which is different from the architectur
Unable to continue.

6. Build the SDK Installer: To build the SDK installer for a standard SDK and populate the SDK image, use the following
command form. Be sure to replace image with an image (e.g. "core-image-sato"):

$ bitbake image -c populate_sdk

You can do the same for the extensible SDK using this command form:

$ bitbake image -c populate_sdk_ext

These commands produce an SDK installer that contains the sysroot that matches your target root filesystem.

When the bitbake command completes, the SDK installer will be in tmp/deploy/sdk in the Build Directory.

Notes

e By default, the previous BitBake command does not build static binaries. If you want to
use the toolchain to build these types of libraries, you need to be sure your SDK has the
appropriate static development libraries. Use the TOOLCHATN TARGET TASK
variable inside your 1ocal . conf file before building the SDK installer. Doing so
ensures that the eventual SDK installation process installs the appropriate library packages
as part of the SDK. Following is an example using 1 il C static development libraries:

TOOLCHAIN_TARGET_TASK_append = " libc-staticdev"

e For additional information on building the installer, see the Cookbook guide to Making_an
Eclipse™ Debug_Capable Image wiki page.

7. Run the Installer: You can now run the SDK installer from tmp/deploy/sdk in the Build Directory. Following is
an example:

$ cd ~/poky/build/tmp/deploy/sdk
$./poky-glibc-x86_64-core-image-sato-core2-64-toolchain-ext-2.5.sh

During execution of the script, you choose the root location for the toolchain. See the "Installed Standard SDK Directory
Structure" section and the "Installed Extensible SDK Directory Structure" section for more information.

A.3. Extracting the Root Filesystem(

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 38/51

http://www.yoctoproject.org/docs/2.5/dev-manual/dev-manual.html#setting-up-the-development-host-to-use-the-yocto-project
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#source-directory
http://www.yoctoproject.org/docs/2.5/dev-manual/dev-manual.html#cloning-the-poky-repository
http://www.yoctoproject.org/docs/2.5/dev-manual/dev-manual.html#checking-out-by-branch-in-poky
http://www.yoctoproject.org/docs/2.5/dev-manual/dev-manual.html#checkout-out-by-tag-in-poky
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#structure-core-script
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#build-directory
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-MACHINE
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-SDKMACHINE
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-TOOLCHAIN_TARGET_TASK
https://wiki.yoctoproject.org/wiki/TipsAndTricks/RunningEclipseAgainstBuiltImage

3/4/2020 Yocto Project Application Development and the Extensible Software Development Kit (eSDK)
After installing the toolchain, for some use cases you might need to separately extract a root filesystem:
e You want to boot the image using NFS.

e You want to use the root filesystem as the target sysroot. For example, the Eclipse IDE environment with the Eclipse Yocto
Plug-in installed allows you to use QEMU to boot under NFS.

e You want to develop your target application using the root filesystem as the target sysroot.
Follow these steps to extract the root filesystem:

1. Locate and Download the Tarball for the Pre-Built Root Filesystem Image File: You need to find and download
the root filesystem image file that is appropriate for your target system. These files are kept in machine-specific folders
in the Index of Releases in the "machines" directory.

The machine-specific folders of the "machines" directory contain tarballs (* . tar . z2) for supported machines.
These directories also contain flattened root filesystem image files (* . @xXt 4), which you can use with QEMU directly.

The pre-built root filesystem image files follow these naming conventions:

core-image-profile-arch.tar.bz2

Where:
profile is the filesystem image's profile:
1sb, 1sb-dev, 1lsb-sdk, minimal, minimal-dev, minimal-initramfs,
sato, sato-dev, sato-sdk, sato-sdk-ptest. For information on
these types of image profiles, see the "Images" chapter in
the Yocto Project Reference Manual.

arch is a string representing the target architecture:
beaglebone-yocto, beaglebone-yocto-1sb, edgerouter, edgerouter-1sb,

genericx86, genericx86-64, genericx86-64-1lsb, genericx86-1sb,
mpc8315e-rdb, mpc8315e-rdb-1sb, and gemu*.

The root filesystems provided by the Yocto Project are based off of the core—image—sato and core-—
image-minimal images.

For example, if you plan on using a BeagleBone device as your target hardware and your image is a core—image—
sato-sdk image, you can download the following file:

core-image-sato-sdk-beaglebone-yocto.tar.bz2
2. Initialize the Cross-Development Environment: You must SOUYXCe the cross-development environment setup
script to establish necessary environment variables.
This script is located in the top-level directory in which you installed the toolchain (e.g. pokyisdk).

Following is an example based on the toolchain installed in the "Locating_Pre-Built SDK Installers" section:

$ source ~/poky_sdk/environment-setup-core2-64-poky-1linux
3. Extract the Root Filesystem: Use the rungemu—-extract—-sdk command and provide the root filesystem
image.

Following is an example command that extracts the root filesystem from a previously built root filesystem image that was
downloaded from the Index of Releases. This command extracts the root filesystem into the core2—-64-sato
directory:

$ rungemu-extract-sdk ~/Downloads/core-image-sato-sdk-beaglebone-yocto.tar.bz2 ~/beaglebone-sato

You could now point to the target sysroot at beablebone-sato.

A.4. Installed Standard SDK Directory Structureq

The following figure shows the resulting directory structure after you install the Standard SDK by running the * . sh SDK
installation script:

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 39/51

http://downloads.yoctoproject.org/releases/yocto/yocto-2.5/machines/
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#ref-images
http://www.yoctoproject.org/docs/2.5/overview-manual/overview-manual.html#index-downloads

3/4/2020 Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

| install_dir/version

1 —D environment-setup-target-poky-linux
—D site-config-target-poky-linux

1 —D version-target-poky-linux

sysroots

| target-poky-linux
| bin

boot

usr
| var
host-pokysdk-linux
bin
environment-setup.d
1] etc
=l lib

| shin

usr
Var

The installed SDK consists of an environment setup script for the SDK, a configuration file for the target, a version file for the
target, and the root filesystem (SySrOOtS) needed to develop objects for the target system.

Within the figure, italicized text is used to indicate replaceable portions of the file or directory name. For example,
install_dir/version is the directory where the SDK is installed. By default, this directory is /Opt /po ky/. And, version
represents the specific snapshot of the SDK (e.g. 2 . 5). Furthermore, target represents the target architecture (e.g. 1586)
and host represents the development system's architecture (e.g. X86_64). Thus, the complete names of the two directories
within the SySToots could be 1586-poky-linuxand x86 64-pokysdk-1linux forthe target and host,
respectively.

A.5. Installed Extensible SDK Directory Structuref

The following figure shows the resulting directory structure after you install the Extensible SDK by running the * . sh SDK
installation script:

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 40/51

3/4/2020 Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

install dir

bitbake-cookerdaemon.log

environment-setup-target-poky-linux

preparing_system build.log

site-config-target-poky-linux

version-target-poky-linux

1t
T

.devtoolbase

m buildtools

| cache
i | conf

|l | downloads

| layers

| sstate-cache

| sysroots
| tmp
| workspace

The installed directory structure for the extensible SDK is quite different than the installed structure for the standard SDK. The
extensible SDK does not separate host and target parts in the same manner as does the standard SDK. The extensible SDK uses
an embedded copy of the OpenEmbedded build system, which has its own sysroots.

Of note in the directory structure are an environment setup script for the SDK, a configuration file for the target, a version file
for the target, and log files for the OpenEmbedded build system preparation script run by the installer and BitBake.

Within the figure, italicized text is used to indicate replaceable portions of the file or directory name. For example, install_dir is
the directory where the SDK is installed, which is PO ky_s dk by default, and target represents the target architecture (e.g.
1586).

Appendix B. Customizing the Extensible SDKY|

Table of Contents

B.1. Configuring_the Extensible SDK

B.2. Adjusting_the Extensible SDK to Suit Your Build Host's Setup
B.3. Changing_the Extensible SDK Installer Title

B.4. Providing_Updates to the Extensible SDK After Installation
B.5. Providing_Additional Installable Extensible SDK Content

B.6. Minimizing_the Size of the Extensible SDK Installer Download

This appendix presents customizations you can apply to the extensible SDK.

B.1. Configuring the Extensible SDKY|

The extensible SDK primarily consists of a pre-configured copy of the OpenEmbedded build system from which it was produced.
Thus, the SDK's configuration is derived using that build system and the filters shown in the following list. When these filters are
present, the OpenEmbedded build system applies them against 1ocal.conf and auto.conf:

e Variables whose values start with "/" are excluded since the assumption is that those values are paths that are likely to be
specific to the build host.

e Variables listed in SDK_LOCATL _CONF_BLACKLTIST are excluded. These variables are not allowed through from the
OpenEmbedded build system configuration into the extensible SDK configuration. Typically, these variables are specific to the
machine on which the build system is running and could be problematic as part of the extensible SDK configuration.

For a list of the variables excluded by default, see the SDK_TLOCAL CONF_BLACKLTIST in the glossary of the Yocto
Project Reference Manual.

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 41/51

http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#hardware-build-system-term
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-SDK_LOCAL_CONF_BLACKLIST
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-SDK_LOCAL_CONF_BLACKLIST

3/4/2020

Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

e Variables listed in SDK_LOCAL CONF WHITETLTST are included. Including a variable in the value of
SDK_LOCAL CONF WHITELTIST overrides either of the previous two filters. The default value is blank.

o Classes inherited globally with INHERTT that are listed in SDK_TNHERTT BLACKLTIST are disabled. Using
SDK_INHERIT BLACKLIST to disable these classes is the typical method to disable classes that are problematic or
unnecessary in the SDK context. The default value blacklists the buildhistory and icecc classes.

Additionally, the contents of conf/sdk—extra.conf, when present, are appended to the end of
conf/local.conf within the produced SDK, without any filtering. The sdk—extra . conf file is particularly useful
if you want to set a variable value just for the SDK and not the OpenEmbedded build system used to create the SDK.

B.2. Adjusting the Extensible SDK to Suit Your Build Host's Setup{

In most cases, the extensible SDK defaults should work with your build host's setup. However, some cases exist for which you
might consider making adjustments:

o If your SDK configuration inherits additional classes using the INHERTT variable and you do not need or want those
classes enabled in the SDK, you can blacklist them by adding them to the SDK_TINHERTT BLACKLIST variable as
described in the fourth bullet of the previous section.

Note
The default value of SDK_TNHERIT BLACKLIST is set using the "?=" operator.
Consequently, you will need to either define the entire list by using the "=" operator, or you will

need to append a value using either "_append" or the "+=" operator. You can learn more about
these operators in the "Basic Syntax" section of the BitBake User Manual.

e If you have classes or recipes that add additional tasks to the standard build flow (i.e. the tasks execute as the recipe builds
as opposed to being called explicitly), then you need to do one of the following:

o After ensuring the tasks are shared state tasks (i.e. the output of the task is saved to and can be restored from the shared
state cache) or ensuring the tasks are able to be produced quickly from a task that is a shared state task, add the task
name to the value of SDK_RECRDEP TASKS.

o Disable the tasks if they are added by a class and you do not need the functionality the class provides in the extensible
SDK. To disable the tasks, add the class to the SDK_ INHERIT BLACKLIST variable as described in the previous
section.

e Generally, you want to have a shared state mirror set up so users of the SDK can add additional items to the SDK after
installation without needing to build the items from source. See the "Providing_Additional Installable Extensible SDK Content"
section for information.

« If you want users of the SDK to be able to easily update the SDK, you need to set the SDK_UPDATE_URL variable. For
more information, see the "Providing_Updates to the Extensible SDK After Installation" section.

o If you have adjusted the list of files and directories that appear in COREBASE (other than layers that are enabled through
bblayers.conf), then you must list these files in COREBASE FTLES so that the files are copied into the SDK.

o If your OpenEmbedded build system setup uses a different environment setup script other than ce—init-build-
env, then you must set O INTT ENV_SCRIPT to point to the environment setup script you use.

Note
You must also reflect this change in the value used for the COREBASE FILES variable as
previously described.

B.3. Changing the Extensible SDK Installer Title{

You can change the displayed title for the SDK installer by setting the SDK_TTITLFE variable. By default, this title is derived
from DISTRO_NAME when it is set. If the DISTRO NAME variable is not set, the title is derived from the DISTRO
variable.

The populate sdk ext class defines the default value of the SDK_TITLE variable as follows:

SDK_TITLE_task-populate-sdk-ext = "${@d.getVar('DISTRO_NAME') or d.getVar('DISTRO')} Extensible SDK"

B.4. Providing Updates to the Extensible SDK After Installation(

When you make changes to your configuration or to the metadata and if you want those changes to be reflected in installed
SDKs, you need to perform additional steps. These steps make it possible for anyone using the installed SDKs to update the
installed SDKs by using the devtool sdk-update command:

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 42/51

http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-SDK_LOCAL_CONF_WHITELIST
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-INHERIT
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-SDK_INHERIT_BLACKLIST
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#ref-classes-buildhistory
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#ref-classes-icecc
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#hardware-build-system-term
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-INHERIT
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-SDK_INHERIT_BLACKLIST
http://www.yoctoproject.org/docs/2.5/bitbake-user-manual/bitbake-user-manual.html#basic-syntax
http://www.yoctoproject.org/docs/2.5/overview-manual/overview-manual.html#shared-state-cache
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-SDK_RECRDEP_TASKS
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-SDK_UPDATE_URL
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-COREBASE
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-COREBASE_FILES
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#structure-core-script
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-OE_INIT_ENV_SCRIPT
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-SDK_TITLE
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-DISTRO_NAME
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-DISTRO
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#ref-classes-populate-sdk-*

3/4/2020

Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

1. Create a directory that can be shared over HTTP or HTTPS. You can do this by setting up a web server such as an Apache
HTTP Server or Nginx server in the cloud to host the directory. This directory must contain the published SDK.

2. Set the SDK_UPDATE_URIL variable to point to the corresponding HTTP or HTTPS URL. Setting this variable causes
any SDK built to default to that URL and thus, the user does not have to pass the URL to the devtool sdk-
update command as described in the "Applying_Updates to an Installed Extensible SDK" section.

3. Build the extensible SDK normally (i.e., use the bitbake -c populate sdk ext imagename command).

4. Publish the SDK using the following command:

$ oe-publish-sdk some_path/sdk-installer.sh path_to_shared http_directory
You must repeat this step each time you rebuild the SDK with changes that you want to make available through the
update mechanism.

Completing the above steps allows users of the existing installed SDKs to simply run devtool sdk-update to retrieve
and apply the latest updates. See the "Applying_Updates to an Installed Extensible SDK" section for further information.

B.5. Providing Additional Installable Extensible SDK Content]|

If you want the users of an extensible SDK you build to be able to add items to the SDK without requiring the users to build the
items from source, you need to do a number of things:

1. Ensure the additional items you want the user to be able to install are already built:
e Build the items explicitly. You could use one or more "meta" recipes that depend on lists of other recipes.

* Build the "world" target and set EXCLUDE FROM WORLD pn-—recipename for the recipes you do not want
built. See the EXCLUDE_FROM_WORLD variable for additional information.

2. Expose the sstate—-cache directory produced by the build. Typically, you expose this directory by making it
available through an Apache HTTP Server or Nginx server.

3. Set the appropriate configuration so that the produced SDK knows how to find the configuration. The variable you need
tosetis SSTATE MIRRORS:

SSTATE_MIRRORS = "file://.* http://example.com/some_path/sstate-cache/PATH"

You can set the SSTATE MIRRORS variable in two different places:

o If the mirror value you are setting is appropriate to be set for both the OpenEmbedded build system that is actually
building the SDK and the SDK itself (i.e. the mirror is accessible in both places or it will fail quickly on the
OpenEmbedded build system side, and its contents will not interfere with the build), then you can set the variable in
your Llocal.conf or custom distro configuration file. You can then "whitelist" the variable through to the SDK by
adding the following:

SDK_LOCAL_CONF_WHITELIST = "SSTATE_MIRRORS"

e Alternatively, if you just want to set the SSTATE MIRRORS variable's value for the SDK alone, create a
conf/sdk-extra.conf file either in your Build Directory or within any layer and put your
SSTATE MIRRORS setting within that file.

Note

This second option is the safest option should you have any doubts as to which method to
use when setting SSTATE MIRRORS.

B.6. Minimizing the Size of the Extensible SDK Installer Downloadf|

By default, the extensible SDK bundles the shared state artifacts for everything needed to reconstruct the image for which the
SDK was built. This bundling can lead to an SDK installer file that is a Gigabyte or more in size. If the size of this file causes a
problem, you can build an SDK that has just enough in it to install and provide access to the devtool command by
setting the following in your configuration:

SDK_EXT_TYPE = "minimal"

Setting SDK_EXT_TYPE to "minimal" produces an SDK installer that is around 35 Mbytes in size, which downloads and
installs quickly. You need to realize, though, that the minimal installer does not install any libraries or tools out of the box. These
libraries and tools must be installed either "on the fly" or through actions you perform using devtool or explicitly with the
devtool sdk-install command.

In most cases, when building a minimal SDK you need to also enable bringing in the information on a wider range of packages
produced by the system. Requiring this wider range of information is particularly true so that devtool add is able to
effectively map dependencies it discovers in a source tree to the appropriate recipes. Additionally, the information enables the
devtool search command to return useful results.

To facilitate this wider range of information, you would need to set the following:

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html

43/51

https://en.wikipedia.org/wiki/Apache_HTTP_Server
https://en.wikipedia.org/wiki/Nginx
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-SDK_UPDATE_URL
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-EXCLUDE_FROM_WORLD
https://en.wikipedia.org/wiki/Apache_HTTP_Server
https://en.wikipedia.org/wiki/Nginx
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-SSTATE_MIRRORS
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#build-directory
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-SDK_EXT_TYPE

3/4/2020

Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

SDK_INCLUDE_PKGDATA = "1"

See the SDK_TINCLUDE PKGDATA variable for additional information.

Setting the SDK_ INCLUDE PKGDATA variable as shown causes the "world" target to be built so that information for all
of the recipes included within it are available. Having these recipes available increases build time significantly and increases the
size of the SDK installer by 30-80 Mbytes depending on how many recipes are included in your configuration.

You can use EXCLUDE FROM WORLD_pn-—recipename for recipes you want to exclude. However, it is assumed that you
would need to be building the "world" target if you want to provide additional items to the SDK. Consequently, building for
"world" should not represent undue overhead in most cases.

Note

If you set SDK_EXT_TYPE to "minimal", then providing a shared state mirror is mandatory so

that items can be installed as needed. See the "Providing_Additional Installable Extensible SDK
Content" section for more information.

You can explicitly control whether or not to include the toolchain when you build an SDK by setting the
SDK_INCLUDE_TOOLCHAIN variable to "1". In particular, it is useful to include the toolchain when you have set
SDK_EXT TYPE to "minimal", which by default, excludes the toolchain. Also, it is helpful if you are building a small SDK for
use with an IDE, such as Eclipse™, or some other tool where you do not want to take extra steps to install a toolchain.

Appendix C. Customizing the Standard SDKY|

Table of Contents

C.1. Adding_Individual Packages to the Standard SDK
C.2. Adding_API Documentation to the Standard SDK

This appendix presents customizations you can apply to the standard SDK.

C.1. Adding Individual Packages to the Standard SDKY|

When you build a standard SDK using the bitbake -c populate sdk, a default set of packages is included in the
resulting SDK. The TOOLCHATN HOST TASK and TOOLCHATIN TARGET TASK variables control the set of
packages adding to the SDK.

If you want to add individual packages to the toolchain that runs on the host, simply add those packages to the
TOOLCHAIN HOST TASK variable. Similarly, if you want to add packages to the default set that is part of the toolchain
that runs on the target, add the packages to the TOOLCHAIN TARGET TASK variable.

C.2. Adding API Documentation to the Standard SDKY|

You can include API documentation as well as any other documentation provided by recipes with the standard SDK by adding
"api-documentation” to the DISTRO FEATURKES variable:

DISTRO_FEATURES_append = " api-documentation"

Setting this variable as shown here causes the OpenEmbedded build system to build the documentation and then include it in
the standard SDK.

Appendix D. Using Eclipse™ Neonf|

Table of Contents

D.1. Setting_Up the Neon Version of the Eclipse IDE
D.1.1. Installing_the Neon Eclipse IDE
D.1.2. Configuring_the Neon Eclipse IDE
D.1.3. Installing_or Accessing_the Neon Eclipse Yocto Plug-in
D.1.4. Configuring_the Neon Eclipse Yocto Plug-In

D.2. Creating_the Project

D.3. Configuring_the Cross-Toolchains

D.4. Building_the Project

D.5. Starting_ QEMU in User-Space NFS Mode
D.6. Deploying_and Debugging_the Application
D.7. Using_Linuxtools

This release of the Yocto Project supports both the Oxygen and Neon versions of the Eclipse IDE. This appendix presents
information that describes how to obtain and configure the Neon version of Eclipse. It also provides a basic project example that

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html

44/51

http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-SDK_INCLUDE_PKGDATA
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-SDK_INCLUDE_TOOLCHAIN
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-TOOLCHAIN_HOST_TASK
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-TOOLCHAIN_TARGET_TASK
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#var-DISTRO_FEATURES

3/4/2020

Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

you can work through from start to finish. For general information on using the Eclipse IDE and the Yocto Project Eclipse Plug-In,
see the "Application Development Workflow Using_Eclipse™" section.

D.1. Setting Up the Neon Version of the Eclipse IDE]|
To develop within the Eclipse IDE, you need to do the following:

1. Install the Neon version of the Eclipse IDE.

2. Configure the Eclipse IDE.

3. Install the Eclipse Yocto Plug-in.

4. Configure the Eclipse Yocto Plug-in.

Note

Do not install Eclipse from your distribution's package repository. Be sure to install Eclipse from the
official Eclipse download site as directed in the next section.

D.1.1. Installing the Neon Eclipse IDE]

Follow these steps to locate, install, and configure Neon Eclipse:

1. Locate the Neon Download: Open a browser and go to http://www.eclipse.org/neon/.

2. Download the Tarball: Click the "Download" button and look for the "Eclipse IDE for C/C++ Developers" Neon 3
Package. Select the correct platform download link listed at the right. For example, click on "64-bit" next to Linux if your
build host is running a 64-bit Linux distribution. Click through the process to save the file.

3. Unpack the Tarball: Move to a directory and unpack the tarball. The following commands unpack the tarball into the
home directory:

$ cd ~
$ tar -xzvf ~/Downloads/eclipse-cpp-neon-3-linux-gtk-x86_64.tar.gz
Everything unpacks into a folder named "Eclipse".
4. Launch Eclipse: The following commands launch Eclipse assuming you unpacked it in your home directory:
$ cd ~/eclipse

$./eclipse

Accept the default "workspace" once Eclipse launches.

D.1.2. Configuring the Neon Eclipse IDE]

Follow these steps to configure the Neon Eclipse IDE.

Notes

e Depending on how you installed Eclipse and what you have already done, some of the options do
not appear. If you cannot find an option as directed by the manual, it has already been installed.

o If you want to see all options regardless of whether they are installed or not, deselect the "Hide
items that are already installed" check box.

1. Be sure Eclipse is running and you are in your workbench.
2. Select "Install New Software" from the "Help" pull-down menu.
3. Select "Neon - http://download.eclipse.org/releases/neon" from the "Work with:" pull-down menu.

4. Expand the box next to "Linux Tools" and select the following

C/C++ Remote (Over TCF/TE) Run/Debug Launcher
TM Terminal

5. Expand the box next to "Mobile and Device Development" and select the following boxes:

C/C++ Remote (Over TCF/TE) Run/Debug Launcher
Remote System Explorer User Actions

TM Terminal

TCF Remote System Explorer add-in

TCF Target Explorer

6. Expand the box next to "Programming Languages" and select the following box:

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html

45/51

http://www.eclipse.org/neon/

3/4/2020

7

Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

C/C++ Development Tools SDK

. Complete the installation by clicking through appropriate "Next" and "Finish" buttons.

D.1.3. Installing or Accessing the Neon Eclipse Yocto Plug-inf

You can install the Eclipse Yocto Plug-in into the Eclipse IDE one of two ways: use the Yocto Project's Eclipse Update site to

install

the pre-built plug-in or build and install the plug-in from the latest source code.

D.1.3.1. Installing the Pre-built Plug-in from the Yocto Project Eclipse Update Site{

To install the Neon Eclipse Yocto Plug-in from the update site, follow these steps:

1

2.

D.1.3.

. Start up the Eclipse IDE.
In Eclipse, select "Install New Software" from the "Help" menu.
. Click "Add..." in the "Work with:" area.

.Enter http://downloads.yoctoproject.org/releases/eclipse-
plugin/2.5/neon in the URL field and provide a meaningful name in the "Name" field.

. Click "OK" to have the entry automatically populate the "Work with:" field and to have the items for installation appear in
the window below.

. Check the boxes next to the following:

Yocto Project SDK Plug-in
Yocto Project Documentation plug-in
. Complete the remaining software installation steps and then restart the Eclipse IDE to finish the installation of the plug-

in.

Note

You can click "OK" when prompted about installing software that contains unsigned content.

2. Installing the Plug-in Using the Latest Source Codef

To install the Neon Eclipse Yocto Plug-in from the latest source code, follow these steps:

1.

Be sure your build host has JDK version 1.8 or greater. On a Linux build host you can determine the version using the
following command:

$ java -version

. install X11-related packages:

$ sudo apt-get install xauth

. In a new terminal shell, create a Git repository with:
$ cd ~
$ git clone git://git.yoctoproject.org/eclipse-yocto
. Use Git to create the correct tag:
$ cd ~/eclipse-yocto
$ git checkout -b neon/sumo remotes/origin/neon/sumo
This creates a local tag named neon/sumo based on the branch origin/neon/sumo. You are put into a
detached HEAD state, which is fine since you are only going to be building and not developing.
. Change to the scripts directory within the Git repository:

$ cd scripts

. Set up the local build environment by running the setup script:
$./setup.sh
When the script finishes execution, it prompts you with instructions on how to run the build. sh script, which is also
in the Scripts directory of the Git repository created earlier.
. Run the build. sh script as directed. Be sure to provide the tag name, documentation branch, and a release name.
Following is an example:
$ ECLIPSE_HOME=/home/scottrif/eclipse-yocto/scripts/eclipse ./build.sh -1 neon/sumo master yocto-2.5 2>&1 |

< >

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html

46/51

3/4/2020

Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

The previous example command adds the tag you need for neon/sumo to HEAD, then tells the build script to use
the local (-I) Git checkout for the build. After running the script, the file 0rg. yocto.sdk—release—date—
archive. zipisin the current directory.

8. If necessary, start the Eclipse IDE and be sure you are in the Workbench.
9. Select "Install New Software" from the "Help" pull-down menu.

10. Click "Add".

11. Provide anything you want in the "Name" field.

12. Click "Archive" and browse to the ZIP file you built earlier. This ZIP file should not be "unzipped", and must be the
*archive. zip file created by running the build. sh script.

13. Click the "OK" button.

14. Check the boxes that appear in the installation window to install the following:

Yocto Project SDK Plug-in
Yocto Project Documentation plug-in

15. Finish the installation by clicking through the appropriate buttons. You can click "OK" when prompted about installing
software that contains unsigned content.
16. Restart the Eclipse IDE if necessary.

At this point you should be able to configure the Eclipse Yocto Plug-in as described in the "Configuring_the Neon Eclipse Yocto
Plug-in" section.

D.1.4. Configuring the Neon Eclipse Yocto Plug-In{|

Configuring the Neon Eclipse Yocto Plug-in involves setting the Cross Compiler options and the Target options. The configurations

you choose become the default settings for all projects. You do have opportunities to change them later when you configure the
project (see the following section).

To start, you need to do the following from within the Eclipse IDE:
1. Choose "Preferences" from the "Window" menu to display the Preferences Dialog.
2. Click "Yocto Project SDK" to display the configuration screen.

The following sub-sections describe how to configure the the plug-in.

Note

Throughout the descriptions, a start-to-finish example for preparing a QEMU image for use with Eclipse
is referenced as the "wiki" and is linked to the example on the Cookbook guide to Making_an Eclipse
Debug_Capable Image wiki page.

D.1.4.1. Configuring the Cross-Compiler Optionsf

Cross Compiler options enable Eclipse to use your specific cross compiler toolchain. To configure these options, you must select
the type of toolchain, point to the toolchain, specify the sysroot location, and select the target architecture.

e Selecting the Toolchain Type: Choose between "Standalone pre-built toolchain" and "Build system derived toolchain" for
Cross Compiler Options.

o Standalone Pre-built Toolchain: Select this type when you are using a stand-alone cross-toolchain. For example,
suppose you are an application developer and do not need to build a target image. Instead, you just want to use an
architecture-specific toolchain on an existing kernel and target root filesystem. In other words, you have downloaded and
installed a pre-built toolchain for an existing image.

o Build System Derived Toolchain: Select this type if you built the toolchain as part of the Build Directory. When you
select "Build system derived toolchain", you are using the toolchain built and bundled inside the Build Directory. For
example, suppose you created a suitable image using the steps in the wiki. In this situation, you would select "Build
system derived toolchain".

e Specify the Toolchain Root Location: If you are using a stand-alone pre-built toolchain, you should be pointing to where it

is installed (e.g. /opt/poky/2.5). See the "Installing_the SDK" section for information about how the SDK is installed.

If you are using a build system derived toolchain, the path you provide for the "Toolchain Root Location" field is the Build
Directory, from which you run the bitbake command (e.g /home/scottrif/poky/build).

For more information, see the "Building_an SDK Installer" section.

e Specify Sysroot Location: This location is where the root filesystem for the target hardware resides.

This location depends on where you separately extracted and installed the target filesystem when you either built it or
downloaded it.

Note

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html

47/51

https://wiki.yoctoproject.org/wiki/TipsAndTricks/RunningEclipseAgainstBuiltImage
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#build-directory
https://wiki.yoctoproject.org/wiki/TipsAndTricks/RunningEclipseAgainstBuiltImage
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#build-directory

3/4/2020 Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

If you downloaded the root filesystem for the target hardware rather than built it, you must
download the sat o—sdk image in order to build any c/c++ projects.

As an example, suppose you prepared an image using the steps in the wiki. If so, the MY QEMU ROOTF'S directory is
found in the Build Directory and you would browse to and select that directory (e.g.
/home/scottrif/bui ld/MYiQEMUiROOTFS).

For more information on how to install the toolchain and on how to extract and install the sysroot filesystem, see the
"Building_an SDK Installer" section.

o Select the Target Architecture: The target architecture is the type of hardware you are going to use or emulate. Use the
pull-down "Target Architecture" menu to make your selection. The pull-down menu should have the supported architectures.
If the architecture you need is not listed in the menu, you will need to build the image. See the "Building_a Simple Image"
section of the Yocto Project Development Tasks Manual for more information. You can also see the wiki.

D.1.4.2. Configuring the Target Options]|

You can choose to emulate hardware using the QEMU emulator, or you can choose to run your image on actual hardware.

e QEMU: Select this option if you will be using the QEMU emulator. If you are using the emulator, you also need to locate the
kernel and specify any custom options.

If you selected the Build system derived toolchain, the target kernel you built will be located in the Build Directory in
tmp/deploy/ images /machine directory. As an example, suppose you performed the steps in the wiki. In this
case, you specify your Build Directory path followed by the image (e.g.
/home/scottrif/poky/build/tmp/deploy/images/gemux86/bzImage-
gemux86.bin).

If you selected the standalone pre-built toolchain, the pre-built image you downloaded is located in the directory you
specified when you downloaded the image.

Most custom options are for advanced QEMU users to further customize their QEMU instance. These options are specified
between paired angled brackets. Some options must be specified outside the brackets. In particular, the options serial,
nographic, and kKvm must all be outside the brackets. Use the man gemu command to get help on all the options
and their use. The following is an example:

serial ‘<-m 256 -full-screen>’
Regardless of the mode, Sysroot is already defined as part of the Cross-Compiler Options configuration in the "Sysroot
Location:" field.
o External HW: Select this option if you will be using actual hardware.

Click the "Apply" and "OK" to save your plug-in configurations.

D.2. Creating the Project

You can create two types of projects: Autotools-based, or Makefile-based. This section describes how to create Autotools-based
projects from within the Eclipse IDE. For information on creating Makefile-based projects in a terminal window, see the
"Makefile-Based Projects" section.

Note

Do not use special characters in project names (e.g. spaces, underscores, etc.). Doing so can cause
the configuration to fail.

To create a project based on a Yocto template and then display the source code, follow these steps:
1. Select "C Project" from the "File -> New" menu.
2. Expand "Yocto Project SDK Autotools Project".
3. Select "Hello World ANSI C Autotools Projects". This is an Autotools-based project based on a Yocto template.
4. Put a name in the "Project name:" field. Do not use hyphens as part of the name (e.g. "hello").
5. Click "Next".
6. Add appropriate information in the various fields.
7. Click "Finish".
8. If the "open perspective" prompt appears, click "Yes" so that you are in the C/C++ perspective.

9. The left-hand navigation pane shows your project. You can display your source by double clicking the project's source
file.

D.3. Configuring the Cross-Toolchainsf|

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 48/51

https://wiki.yoctoproject.org/wiki/TipsAndTricks/RunningEclipseAgainstBuiltImage
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#build-directory
http://www.yoctoproject.org/docs/2.5/dev-manual/dev-manual.html#dev-building-a-simple-image
https://wiki.yoctoproject.org/wiki/TipsAndTricks/RunningEclipseAgainstBuiltImage
http://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html#build-directory
https://wiki.yoctoproject.org/wiki/TipsAndTricks/RunningEclipseAgainstBuiltImage

3/4/2020

these settings for a

Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

given project by following these steps:

1. Select "Yocto Project Settings" from the "Project -> Properties" menu. This selection brings up the Yocto Project Settings
Dialog and allows you to make changes specific to an individual project.

By default, the Cross Compiler Options and Target Options for a project are inherited from settings you provided using
the Preferences Dialog as described earlier in the "Configuring_the Neon Eclipse Yocto Plug-in" section. The Yocto Project
Settings Dialog allows you to override those default settings for a given project.

2. Make or verify your configurations for the project and click "OK".

3. Right-click in the navigation pane and select "Reconfigure Project" from the pop-up menu. This selection reconfigures the
project by running Autotools GNU utility programs such as Autoconf, Automake, and so forth in the workspace for your
project. Click on the "Console" tab beneath your source code to see the results of reconfiguring your project.

D.4. Building the Project(

To build the project select "Build All" from the "Project" menu. The console should update and you can note the cross-compiler

you are using.

Note

When building "Yocto Project SDK Autotools" projects, the Eclipse IDE might display error messages for
Functions/Symbols/Types that cannot be "resolved", even when the related include file is listed at the
project navigator and when the project is able to build. For these cases only, it is recommended to add

a new

[%2]

linked folder to the appropriate sysroot. Use these steps to add the linked folder:

1. Select the project.

2. Select "Folder" from the "File > New" menu.
3.
4

In the "New Folder" Dialog, select "Link to alternate location (linked folder)".

. Click "Browse" to navigate to the include folder inside the same sysroot location selected in

the Yocto Project configuration preferences.

. Click "OK".

6. Click "Finish" to save the linked folder.

D.5. Starting QEMU in User-Space NFS Modef{

To start the QEMU emulator from within Eclipse, follow these steps:

Note

See the "Using_the Quick EMUlator (QEMU)" chapter in the Yocto Project Development Tasks Manual for
more information on using QEMU.

1. Expose and

select "External Tools Configurations ..." from the "Run -> External Tools" menu.

2. Locate and select your image in the navigation panel to the left (e.g. gemu_1586-poky—-1linux).

3. Click "Run" to launch QEMU.

Note

The host on which you are running QEMU must have the rpclbind utility running to be able
to make RPC calls on a server on that machine. If QEMU does not invoke and you receive error
messages involving rpcbind, follow the suggestions to get the service running. As an

example, on a new Ubuntu 16.04 LTS installation, you must do the following in order to get
QEMU to launch:

$ sudo apt-get install rpcbind

After installing rpcbind, you need to edit the /etc/init.d/rpcbind file to
include the following line:

OPTIONS="-i -w"

After modifying the file, you need to start the service:

$ sudo service portmap restart

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 49/51

https://en.wikipedia.org/wiki/GNU_Build_System
http://www.yoctoproject.org/docs/2.5/dev-manual/dev-manual.html#dev-manual-qemu

3/4/2020

Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

. If needed, enter your host root password in the shell window at the prompt. This sets up a Tap 0 connection needed

for running in user-space NFS mode.

. Wait for QEMU to launch.

. Once QEMU launches, you can begin operating within that environment. One useful task at this point would be to

determine the IP Address for the user-space NFS by using the ifconfig command. The IP address of the QEMU
machine appears in the xterm window. You can use this address to help you see which particular IP address the instance
of QEMU is using.

D.6. Deploying and Debugging the Application{

Once the QEMU emulator is running the image, you can deploy your application using the Eclipse IDE and then use the emulator
to perform debugging. Follow these steps to deploy the application.

10.

11.

12.

13.

14.

Note

Currently, Eclipse does not support SSH port forwarding. Consequently, if you need to run or debug a
remote application using the host display, you must create a tunneling connection from outside Eclipse
and keep that connection alive during your work. For example, in a new terminal, run the following:

$ ssh -XY user_name@remote_host_ip

Using the above form, here is an example:

$ ssh -XY root@192.168.7.2

After running the command, add the command to be executed in Eclipse's run configuration before the
application as follows:

export DISPLAY=:10.0

Be sure to not destroy the connection during your QEMU session (i.e. do not exit out of or close that
shell).

. Select "Debug Configurations..." from the "Run" menu.
. In the left area, expand "C/C++Remote Application".
. Locate your project and select it to bring up a new tabbed view in the Debug Configurations Dialog.

. Click on the "Debugger" tab to see the cross-tool debugger you are using. Be sure to change to the debugger perspective

in Eclipse.

. Click on the "Main" tab.

. Create a new connection to the QEMU instance by clicking on "new".

. Select "SSH", which means Secure Socket Shell. Optionally, you can select a TCF connection instead.
. Click "Next".

. Clear out the "Connection name" field and enter any name you want for the connection.

Put the IP address for the connection in the "Host" field. For QEMU, the default is "192.168.7.2". However, if a previous
QEMU session did not exit cleanly, the IP address increments (e.g. "192.168.7.3").

Note

You can find the IP address for the current QEMU session by looking in the xterm that opens
when you launch QEMU.

Enter "root", which is the default for QEMU, for the "User" field. Be sure to leave the password field empty.
Click "Finish" to close the New Connections Dialog.
If necessary, use the drop-down menu now in the "Connection" field and pick the IP Address you entered.

Assuming you are connecting as the root user, which is the default for QEMU x86-64 SDK images provided by the Yocto
Project, in the "Remote Absolute File Path for C/C++ Application" field, browse to /home/root /ProjectName (e.q.
/home/root/hello). You could also browse to any other path you have write access to on the target such as

/usr/bin. This location is where your application will be located on the QEMU system. If you fail to browse to and
specify an appropriate location, QEMU will not understand what to remotely launch. Eclipse is helpful in that it auto fills
your application name for you assuming you browsed to a directory.

Tips

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 50/51

3/4/2020 Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

e If you are prompted to provide a username and to optionally set a password, be sure you
provide "root" as the username and you leave the password field blank.

« If browsing to a directory fails or times out, but you can SSh into your QEMU or target
from the command line and you have proxies set up, it is likely that Eclipse is sending the
SSH traffic to a proxy. In this case, either use TCF , or click on "Configure proxy settings"
in the connection dialog and add the target IP address to the "bypass proxy" section. You
might also need to change "Active Provider" from Native to Manual.

15. Be sure you change to the "Debug" perspective in Eclipse.
16. Click "Debug"

17. Accept the debug perspective.

D.7. Using Linuxtoolsf|

As mentioned earlier in the manual, performance tools exist (Linuxtools) that enhance your development experience. These
tools are aids in developing and debugging applications and images. You can run these tools from within the Eclipse IDE through
the "Linuxtools" menu.

For information on how to configure and use these tools, see http://www.eclipse.org/linuxtools/.

https://www.yoctoproject.org/docs/2.5/sdk-manual/sdk-manual.html 51/51

http://www.eclipse.org/linuxtools/

