3/4/2020 Toaster User Manual

Kristi Rifenbark
Scotty's Documentation Services, INC

<kristi@buzzcollectivemarketing.com>

Copyright © 2010-2019 Linux Foundation

Permission is granted to copy, distribute and/or modify this document under the terms of the Creative Commons Attribution-
Share Alike 2.0 UK: England & Wales as published by Creative Commons.

Manual Notes

e This version of the Toaster User Manual is for the 2.5.3 release of the Yocto Project. To be sure
you have the latest version of the manual for this release, go to the Yocto Project documentation
page and select the manual from that site. Manuals from the site are more up-to-date than
manuals derived from the Yocto Project released TAR files.

e If you located this manual through a web search, the version of the manual might not be the one
you want (e.g. the search might have returned a manual much older than the Yocto Project
version with which you are working). You can see all Yocto Project major releases by visiting the
Releases page. If you need a version of this manual for a different Yocto Project release, visit the
Yocto Project documentation page and select the manual set by using the "ACTIVE RELEASES
DOCUMENTATION" or "DOCUMENTS ARCHIVE" pull-down menus.

e To report any inaccuracies or problems with this manual, send an email to the Yocto Project
discussion group at yocto@yoctoproject.com or log into the freenode #yocto
channel.

’ Revision History

|Revision 1.8 | April 2015

’Released with the Yocto Project 1.8 Release.

|Revision 2.0 | October 2015

’Released with the Yocto Project 2.0 Release.

|Revision 2.1 | April 2016

’Released with the Yocto Project 2.1 Release.

’Revision 2.2 ’October 2016

’Released with the Yocto Project 2.2 Release.

|Revision 2.3 |May 2017

’Released with the Yocto Project 2.3 Release.

|Revision 2.4 |October 2017

’Released with the Yocto Project 2.4 Release.

|Revision 2.5 |May 2018

’Released with the Yocto Project 2.5 Release.

|Revision 2.5.1 |September 2018

’The initial document released with the Yocto Project 2.5.1 Release.

’Revision 2.5.2 ’January 2019

’The initial document released with the Yocto Project 2.5.2 Release.

’Revision 2.5.3 ’March 2019

’The initial document released with the Yocto Project 2.5.3 Release.

https://www.yoctoproject.org/docs/2.5.3/toaster-manual/toaster-manual.html

1/21

mailto:kristi@buzzcollectivemarketing.com
http://creativecommons.org/licenses/by-sa/2.0/uk/
http://www.yoctoproject.org/documentation
https://wiki.yoctoproject.org/wiki/Releases
http://www.yoctoproject.org/documentation

3/4/2020 Toaster User Manual

Table of Contents

1. Introduction
1.1. Toaster Features
1.2. Installation Options

2. Preparing_to Use Toaster
2.1. Setting_Up the Basic System Requirements
2.2. Establishing_Toaster System Dependencies
2.2.1. Install Toaster Packages

3. Setting_Up and Using_Toaster

3.1. Starting_Toaster for Local Development
3.2. Setting_a Different Port
3.3. Setting_Up Toaster Without a Web Server
3.4. Setting_Up Toaster Without a Build Server
3.5. Setting_up External Access
3.6. The Directory for Cloning_Layers
3.7.
3.8.
3.9.

The Build Directory,
Creating_a Django Superuser

Setting_Up a Production Instance of Toaster
3.9.1. Requirements
3.9.2. Installation

3.10. Using_the Toaster Web Interface
3.10.1. Toaster Web Interface Videos
3.10.2. Additional Information About the Local Yocto Project Release
3.10.3. Building_a Specific Recipe Given Multiple Versions

4. Concepts and Reference
4.1. Layer Source
4.1.1. Setting_Up and Using_a Layer Source

4.2. Releases
4.2.1. Pre-Configured Releases

4.3. Configuring_Toaster
4.3.1. Configuring_the Workflow
4.3.2. Customizing_Pre-Set Data
4.3.3. Understanding_Fixture File Format

4.4. Remote Toaster Monitoring
4.4.1. Checking_Health
4.4.2. Determining_Status of Builds in Progress
4.4.3. Checking_Status of Builds Completed
4.4.4. Determining_Status of a Specific Build

4.5. Useful Commands
451.buildslist

4.52.builddelete
453.perf

4.5.4. checksettings
4.5.5. runbuilds

Chapter 1. Introductionq

Table of Contents

1.1. Toaster Features
1.2. Installation Options

Toaster is a web interface to the Yocto Project's OpenEmbedded build system. The interface enables you to configure and run
your builds. Information about builds is collected and stored in a database. You can use Toaster to configure and start builds on
multiple remote build servers.

1.1. Toaster Featuresf|
Toaster allows you to configure and run builds, and it provides extensive information about the build process.

e Configure and Run Builds: You can use the Toaster web interface to configure and start your builds. Builds started using
the Toaster web interface are organized into projects. When you create a project, you are asked to select a release, or
version of the build system you want to use for the project builds. As shipped, Toaster supports Yocto Project releases 1.8
and beyond. With the Toaster web interface, you can:

o Browse layers listed in the various layer sources that are available in your project (e.g. the OpenEmbedded Layer Index at
http://layers.openembedded.org/layerindex/).

o Browse images, recipes, and machines provided by those layers.
o Import your own layers for building.

o Add and remove layers from your configuration.

o Set configuration variables.

o Select a target or multiple targets to build.

https://www.yoctoproject.org/docs/2.5.3/toaster-manual/toaster-manual.html 2/21

http://www.yoctoproject.org/docs/2.5.3/ref-manual/ref-manual.html#build-system-term
http://layers.openembedded.org/layerindex/

3/4/2020

Toaster User Manual

o Start your builds.

Toaster also allows you to configure and run your builds from the command line, and switch between the command line and
the web interface at any time. Builds started from the command line appear within a special Toaster project called "Command
line builds".

o Information About the Build Process: Toaster also records extensive information about your builds. Toaster collects data
for builds you start from the web interface and from the command line as long as Toaster is running.

Note

You must start Toaster before the build or it will not collect build data.

With Toaster you can:

o

o

See what was built (recipes and packages) and what packages were installed into your final image.

Browse the directory structure of your image.

See the value of all variables in your build configuration, and which files set each value.

Examine error, warning, and trace messages to aid in debugging.

See information about the BitBake tasks executed and reused during your build, including those that used shared state.
See dependency relationships between recipes, packages, and tasks.

See performance information such as build time, task time, CPU usage, and disk I/0.

For an overview of Toaster shipped with the Yocto Project 2.5.3 Release, see the "Toaster - Yocto Project 2.2" video.

1.2,

Installation Optionsq

You can set Toaster up to run as a local instance or as a shared hosted service.

When Toaster is set up as a local instance, all the components reside on a single build host. Fundamentally, a local instance of
Toaster is suited for a single user developing on a single build host.

a BitBake
- .

Toaster as a hosted service is suited for multiple users developing across several build hosts. When Toaster is set up as a hosted
service, its components can be spread across several machines:

Projects

Web Server Browser

Chapter 2. Preparing to Use Toaster(

Table of Contents

2.1. Setting_Up the Basic System Requirements

2.2. Establishing_Toaster System Dependencies

https://www.yoctoproject.org/docs/2.5.3/toaster-manual/toaster-manual.html

3/21

https://youtu.be/BlXdOYLgPxA

3/4/2020 Toaster User Manual

2.2.1. Install Toaster Packages

This chapter describes how you need to prepare your system in order to use Toaster.

2.1. Setting Up the Basic System Requirements|

Before you can use Toaster, you need to first set up your build system to run the Yocto Project. To do this, follow the instructions
in the "Preparing_the Build Host" section of the Yocto Project Development Tasks Manual. For Ubuntu/Debian, you might also
need to do an additional install of pip3.

$ sudo apt-get install python3-pip

2.2. Establishing Toaster System Dependencies]|

Toaster requires extra Python dependencies in order to run. A Toaster requirements file named tocaster—
requirements . t Xt defines the Python dependencies. The requirements file is located in the bitlbake directory,
which is located in the root directory of the Source Directory, (e.g. poky/bitbake/toaster-
requirements.txt). The dependencies appear in a P1p, install-compatible format.

2.2.1. Install Toaster Packages]

You need to install the packages that Toaster requires. Use this command:

$ pip3 install --user -r bitbake/toaster-requirements.txt

The previous command installs the necessary Toaster modules into a local python 3 cache in your SHOME directory. The caches
is actually located in SHOME / . 1ocal. To see what packages have been installed into your SHOME directory, do the
following:

$ pip3 list installed --local

If you need to remove something, the following works:

$ pip3 uninstall PackageNameToUninstall

Chapter 3. Setting Up and Using Toasterq

Table of Contents

. Starting_Toaster for Local Development
.2. Setting_a Different Port

. Setting_Up Toaster Without a Web Server
.4. Setting_Up Toaster Without a Build Server
.5. Setting_up External Access

. The Directory for Cloning_Layers

. The Build Directory,

. Creating_a Django Superuser

. Setting_Up a Production Instance of Toaster
3.9.1. Requirements
3.9.2. Installation

3.10. Using_the Toaster Web Interface
3.10.1. Toaster Web Interface Videos
3.10.2. Additional Information About the Local Yocto Project Release
3.10.3. Building_a Specific Recipe Given Multiple Versions

W | [W W [W W W W W
O (00 N[O |UT|-A (W [N [

3.1. Starting Toaster for Local Development]

Once you have set up the Yocto Project and installed the Toaster system dependencies as described in the "Preparing_to Use
Toaster" chapter, you are ready to start Toaster.

Navigate to the root of your Source Directory (e.g. POKY):

$ cd poky

Once in that directory, source the build environment script:

$ source oe-init-build-env

Next, from the build directory (e.g. poky/bui 1d), start Toaster using this command:

$ source toaster start

https://www.yoctoproject.org/docs/2.5.3/toaster-manual/toaster-manual.html 4/21

http://www.yoctoproject.org/docs/2.5.3/dev-manual/dev-manual.html#setting-up-the-development-host-to-use-the-yocto-project
http://www.yoctoproject.org/docs/2.5.3/ref-manual/ref-manual.html#source-directory
http://www.yoctoproject.org/docs/2.5.3/ref-manual/ref-manual.html#source-directory

3/4/2020 Toaster User Manual

You can now run your builds from the command line, or with Toaster as explained in section "Using_the Toaster Web Interface".

To access the Toaster web interface, open your favorite browser and enter the following:

http://127.0.0.1:8000

3.2. Setting a Different Portf

By default, Toaster starts on port 8000. You can use the WEBPORT parameter to set a different port. For example, the
following command sets the port to "8400":

$ source toaster start webport=8400

3.3. Setting Up Toaster Without a Web Serverq

You can start a Toaster environment without starting its web server. This is useful for the following:
e Capturing a command-line build’s statistics into the Toaster database for examination later.

e Capturing a command-line build’s statistics when the Toaster server is already running.

e Having one instance of the Toaster web server track and capture multiple command-line builds, where each build is started in
its own “noweb” Toaster environment.

The following commands show how to start a Toaster environment without starting its web server, perform BitBake operations,
and then shut down the Toaster environment. Once the build is complete, you can close the Toaster environment. Before closing
the environment, however, you should allow a few minutes to ensure the complete transfer of its BitBake build statistics to the
Toaster database. If you have a separate Toaster web server instance running, you can watch this command-line build’s progress
and examine the results as soon as they are posted:

$ source toaster start noweb
$ bitbake target
$ source toaster stop

3.4. Setting Up Toaster Without a Build Serverq

You can start a Toaster environment with the “New Projects” feature disabled. Doing so is useful for the following:
e Sharing your build results over the web server while blocking others from starting builds on your host.

e Allowing only local command-line builds to be captured into the Toaster database.

Use the following command to set up Toaster without a build server:

$ source toaster start nobuild webport=port

3.5. Setting up External Accessf|

By default, Toaster binds to the loop back address (i.e. localhost), which does not allow access from external hosts. To allow
external access, use the WEBPORT parameter to open an address that connects to the network, specifically the IP address
that your NIC uses to connect to the network. You can also bind to all IP addresses the computer supports by using the shortcut
"0.0.0.0:port".

The following example binds to all IP addresses on the host:

$ source toaster start webport=0.0.0.0:8400

This example binds to a specific IP address on the host's NIC:

$ source toaster start webport=192.168.1.1:8400

3.6. The Directory for Cloning Layersf|

Toaster creates a _toaster_clones directory inside your Source Directory (i.e. poky) to clone any layers needed for
your builds.

Alternatively, if you would like all of your Toaster related files and directories to be in a particular location other than the default,
you can set the TOASTER DIR environment variable, which takes precedence over your current working directory. Setting
this environment variable causes Toaster to create and use $TOAS TER DIR. /_toaste r_clones.

3.7. The Build Directoryq

Toaster creates a build directory within your Source Directory (e.g. PO ky) to execute the builds.

https://www.yoctoproject.org/docs/2.5.3/toaster-manual/toaster-manual.html 5/21

3/4/2020

Toaster User Manual

Alternatively, if you would like all of your Toaster related files and directories to be in a particular location, you can set the

TOASTER DIR environment variable, which takes precedence over your current working directory. Setting this environment

variable causes Toaster to use STOASTER DIR/build as the build directory.

3.8. Creating a Django Superuserq

Toaster is built on the Django framework. Django provides an administration interface you can use to edit Toaster configuration

parameters.

To access the Django administration interface, you must create a superuser by following these steps:

1. If you used pip3, which is recommended, to set up the Toaster system dependencies, you need be sure the local user

path is in your PATH list. To append the pip3 local user path, use the following command:
$ export PATH=$PATH:$HOME/.local/bin
2. From the directory containing the Toaster database, which by default is the Build Directory, invoke the
createsuperuser command from manage .py:
$ cd ~/poky/build
$../bitbake/lib/toaster/manage.py createsuperuser
3. Django prompts you for the username, which you need to provide.
4. Django prompts you for an email address, which is optional.
5. Django prompts you for a password, which you must provide.
6. Django prompts you to re-enter your password for verification.
After completing these steps, the following confirmation message appears:

Superuser created successfully.

Creating a superuser allows you to access the Django administration interface through a browser. The URL for this interface is
the same as the URL used for the Toaster instance with "/admin" on the end. For example, if you are running Toaster locally, use

the following URL:

http://127.0.0.1:8000/admin

You can use the Django administration interface to set Toaster configuration parameters such as the build directory, layer
sources, default variable values, and BitBake versions.

3.9. Setting Up a Production Instance of Toasterq

You can use a production instance of Toaster to share the Toaster instance with remote users, multiple users, or both. The

production instance is also the setup that can handle heavier loads on the web service. Use the instructions in the following

sections to set up Toaster to run builds through the Toaster web interface.

3.9.1. Requirementsq

Be sure you meet the following requirements:

Note

You must comply with all Apache, mMOd-wSg1i, and Mysql requirements.

e Have all the build requirements as described in the "Preparing_to Use Toaster" chapter.
e Have an Apache webserver.

e Have mod-wsgi for the Apache webserver.

e Use the Mysql database server.

e If you are using Ubuntu 16.04, run the following:

$ sudo apt-get install apache2 libapache2-mod-wsgi-py3 mysql-server python3-pip libmysqlclient-dev

e If you are using Fedora 24 or a RedHat distribution, run the following:

$ sudo dnf install httpd python3-mod_wsgi python3-pip mariadb-server mariadb-devel python3-devel

e If you are using openSUSE Leap 42.1, run the following:

$ sudo zypper install apache2 apache2-mod_wsgi-python3 python3-pip mariadb mariadb-client python3-devel

https://www.yoctoproject.org/docs/2.5.3/toaster-manual/toaster-manual.html

6/21

https://www.djangoproject.com/
http://www.yoctoproject.org/docs/2.5.3/ref-manual/ref-manual.html#build-directory

3/4/2020 Toaster User Manual

3.9.2. Installation|

Perform the following steps to install Toaster:
1. Create toaster user and set its home directory to /var/www/toaster:

$ sudo /usr/sbin/useradd toaster -md /var/www/toaster -s /bin/false
$ sudo su - toaster -s /bin/bash

2. Checkout a copy of pOKY into the web server directory. You will be using /var/www/toaster:

$ git clone git://git.yoctoproject.org/poky
$ git checkout sumo

3. Install Toaster dependencies using the --user flag which keeps the Python packages isolated from your system-provided
packages:

$ cd /var/www/toaster/
$ pip3 install --user -r ./poky/bitbake/toaster-requirements.txt
$ pip3 install --user mysqlclient

Note

Isolating these packages is not required but is recommended. Alternatively, you can use your
operating system's package manager to install the packages.

4. Configure Toaster by editing
/var/www/toaster/poky/bitbake/lib/toaster/toastermain/settings.py as
follows:

o Edit the DATABASES settings:

DATABASES = {
‘default': {
"ENGINE': 'django.db.backends.mysql’,
'NAME': 'toaster_data’',
'USER': 'toaster',
"PASSWORD': 'yourpasswordhere',
'HOST': 'localhost',
'"PORT': '3306',

e Edit the SECRET KEY:

SECRET_KEY = 'your_secret_key'

e Edit the STATIC ROOT:

STATIC_ROOT = '/var/www/toaster/static_files/"'

5. Add the database and user to the my sl server defined earlier:

$ mysql -u root -p

mysql> CREATE DATABASE toaster_data;

mysql> CREATE USER ‘toaster'@'localhost' identified by 'yourpasswordhere';
mysql> GRANT all on toaster_data.* to 'toaster'@'localhost’;

mysql> quit

6. Get Toaster to create the database schema, default data, and gather the statically-served files:

$ cd /var/www/toaster/poky/

$./bitbake/lib/toaster/manage.py migrate

$ TOASTER_DIR="pwd TEMPLATECONF='poky' \
./bitbake/lib/toaster/manage.py checksettings

$./bitbake/lib/toaster/manage.py collectstatic

In the previous example, from the poky directory, the migrate command ensures the database schema changes
have propagated correctly (i.e. migrations). The next line sets the Toaster root directory TOASTER DIR and the
location of the Toaster configuration file TOASTER CONF', which is relative to TOASTER DIR. The
TEMPLATECONEF value reflects the contents of poky/ . templatecont, and by default, should include the
string "poky". For more information on the Toaster configuration file, see the "Configuring Toaster" section.

This line also runs the checksettings command, which configures the location of the Toaster Build Directory. The
Toaster root directory TOASTER DIR determines where the Toaster build directory is created on the file system. In
the example above, TOASTER DIR is set as follows:

/var/www/toaster/poky

This setting causes the Toaster build directory to be:

https://www.yoctoproject.org/docs/2.5.3/toaster-manual/toaster-manual.html 7121

https://docs.djangoproject.com/en/1.11/ref/settings/#databases
https://docs.djangoproject.com/en/1.11/ref/settings/#std:setting-SECRET_KEY
https://docs.djangoproject.com/en/1.11/ref/settings/#std:setting-STATIC_ROOT
http://www.yoctoproject.org/docs/2.5.3/ref-manual/ref-manual.html#build-directory

3/4/2020

©

Toaster User Manual

/var/www/toaster/poky/build

Finally, the collectstatic command is a Django framework command that collects all the statically served files
into a designated directory to be served up by the Apache web server as defined by STATIC ROOT.

. Test and/or use the Mysql integration with Toaster’s Django web server. At this point, you can start up the normal Toaster

Django web server with the Toaster database in Mysql. You can use this web server to confirm that the database
migration and data population from the Layer Index is complete.

To start the default Toaster Django web server with the Toaster database now in Mysql, use the standard start
commands:

$ source oe-init-build-env
$ source toaster start

Additionally, if Django is sufficient for your requirements, you can use it for your release system and migrate later to
Apache as your requirements change.

Add an Apache configuration file for Toaster to your Apache web server's configuration directory. If you are using Ubuntu
or Debian, put the file here:

/etc/apache2/conf-available/toaster.conf

If you are using Fedora or RedHat, put it here:

/etc/httpd/conf.d/toaster.conf

If you are using OpenSUSE, put it here:

/etc/apache2/conf.d/toaster.conf

Following is a sample Apache configuration for Toaster you can follow:

Alias /static /var/www/toaster/static_files
<Directory /var/www/toaster/static_files>
<IfModule mod_access_compat.c>
Order allow,deny
Allow from all
</IfModule>
<IfModule !mod_access_compat.c>
Require all granted
</IfModule>
</Directory>

<Directory /var/www/toaster/poky/bitbake/lib/toaster/toastermain>
<Files "wsgi.py">
Require all granted
</Files>
</Directory>
WSGIDaemonProcess toaster_wsgi python-path=/var/www/toaster/poky/bitbake/1lib/toaster:/var/www/toaster/.local/
WSGIScriptAlias / "/var/www/toaster/poky/bitbake/lib/toaster/toastermain/wsgi.py"
<Location />
WSGIProcessGroup toaster_wsgi
</Location>
< >
If you are using Ubuntu or Debian, you will need to enable the config and module for Apache:
$ sudo a2enmod wsgi
$ sudo a2enconf toaster
$ chmod +x bitbake/lib/toaster/toastermain/wsgi.py

Finally, restart Apache to make sure all new configuration is loaded. For Ubuntu, Debian, and OpenSUSE use:

$ sudo service apache2 restart

For Fedora and RedHat use:

$ sudo service httpd restart

9. Prepare the systemd service to run Toaster builds. Here is a sample configuration file for the service:

[unit]
Description=Toaster runbuilds

[Service]

Type=forking

User=toaster

ExecStart=/usr/bin/screen -d -m -S runbuilds /var/www/toaster/poky/bitbake/lib/toaster/runbuilds-service.sh s
ExecStop=/usr/bin/screen -S runbuilds -X quit

WorkingDirectory=/var/www/toaster/poky

[Install]
WantedBy=multi-user.target

4 b

https://www.yoctoproject.org/docs/2.5.3/toaster-manual/toaster-manual.html

8/21

3/4/2020 Toaster User Manual

Prepare the runbuilds—service. sh script that you need to place in the
/var/www/toaster/poky/bitbake/lib/toaster/ directory by setting up executable
permissions:

#!/bin/bash

#export http_proxy=http://proxy.host.com:8080
#export https_proxy=http://proxy.host.com:8080
#export GIT_PROXY_COMMAND=$HOME/bin/gitproxy
cd ~/poky/

source ./oe-init-build-env build

source ../bitbake/bin/toaster $1 noweb
["$1" == 'start'] && /bin/bash

10. Run the service:

service runbuilds start

Since the service is running in a detached screen session, you can attach to it using this command:

$ sudo su - toaster
$ screen -rS runbuilds

You can detach from the service again using "Ctrl-a" followed by "d" key combination.

You can now open up a browser and start using Toaster.

3.10. Using the Toaster Web Interfaceq

The Toaster web interface allows you to do the following:

e Browse published layers in the OpenEmbedded Layer Index that are available for your selected version of the build system.
e Import your own layers for building.

e Add and remove layers from your configuration.

e Set configuration variables.

e Select a target or multiple targets to build.

e Start your builds.

e See what was built (recipes and packages) and what packages were installed into your final image.

e Browse the directory structure of your image.

e See the value of all variables in your build configuration, and which files set each value.

e Examine error, warning and trace messages to aid in debugging.

e See information about the BitBake tasks executed and reused during your build, including those that used shared state.
e See dependency relationships between recipes, packages and tasks.

e See performance information such as build time, task time, CPU usage, and disk I/O.

3.10.1. Toaster Web Interface Videos]

Following are several videos that show how to use the Toaster GUI:
e Build Configuration: This video overviews and demonstrates build configuration for Toaster.
e Build Custom Layers: This video shows you how to build custom layers that are used with Toaster.

o Toaster Homepage and Table Controls: This video goes over the Toaster entry page, and provides an overview of the
data manipulation capabilities of Toaster, which include search, sorting and filtering by different criteria.

e Build Dashboard: This video shows you the build dashboard, a page providing an overview of the information available for a
selected build.

o Image Information: This video walks through the information Toaster provides about images: packages installed and root
file system.

e Configuration: This video provides Toaster build configuration information.

e Tasks: This video shows the information Toaster provides about the tasks run by the build system.

e Recipes and Packages Built: This video shows the information Toaster provides about recipes and packages built.

e Performance Data: This video shows the build performance data provided by Toaster.

3.10.2. Additional Information About the Local Yocto Project Release{|

https://www.yoctoproject.org/docs/2.5.3/toaster-manual/toaster-manual.html 9/21

http://layers.openembedded.org/
https://www.youtube.com/watch?v=qYgDZ8YzV6w
https://www.youtube.com/watch?v=QJzaE_XjX5c
https://www.youtube.com/watch?v=QEARDnrR1Xw
https://www.youtube.com/watch?v=KKqHYcnp2gE
https://www.youtube.com/watch?v=XqYGFsmA0Rw
https://www.youtube.com/watch?v=UW-j-T2TzIg
https://www.youtube.com/watch?v=D4-9vGSxQtw
https://www.youtube.com/watch?v=x-6dx4huNnw
https://www.youtube.com/watch?v=qWGMrJoqusQ

3/4/2020 Toaster User Manual

This section only applies if you have set up Toaster for local development, as explained in the "Starting Toaster for Local
Development" section.

When you create a project in Toaster, you will be asked to provide a name and to select a Yocto Project release. One of the
release options you will find is called "Local Yocto Project".

yocto - Toaster © & Manu

FROIECT

Create a new project

Project name (required)

Release

+ Local Yocto Project

Yocto Project 2.0 Jethro

Yocto Project master h the
Version of e YOCTO FToject you
have cloned or downloaded to your
computer.

Create project To create a project, you need to enter a project name

When you select the "Local Yocto Project" release, Toaster will run your builds using the local Yocto Project clone you have in
your computer: the same clone you are using to run Toaster. Unless you manually update this clone, your builds will always use
the same Git revision.

If you select any of the other release options, Toaster will fetch the tip of your selected release from the upstream Yocto Project
repository every time you run a build. Fetching this tip effectively means that if your selected release is updated upstream, the
Git revision you are using for your builds will change. If you are doing development locally, you might not want this change to
happen. In that case, the "Local Yocto Project" release might be the right choice.

However, the "Local Yocto Project" release will not provide you with any compatible layers, other than the three core layers that
come with the Yocto Project:

e openembedded-core
e meta-poky

e meta-yocto-bsp

https://www.yoctoproject.org/docs/2.5.3/toaster-manual/toaster-manual.html 10/21

https://git.yoctoproject.org/
http://layers.openembedded.org/layerindex/branch/master/layer/openembedded-core/
http://layers.openembedded.org/layerindex/branch/master/layer/meta-poky/
http://layers.openembedded.org/layerindex/branch/master/layer/meta-yocto-bsp/

3/4/2020 Toaster User Manual

YOCtO - Toaster @ =Aibuids 8 Al projects

My project .
Builds (0) Import layer ~ New custom image

Configuration Compatible layers (3)

COMPATIBLE METADATA
Search compatible layers

Custom images

Image recipes
Software recipes Layer ~ Summary
Machines meta-poky
[Laes
EXTRA CONFIGURATION meta-yocto-bsp

BitBake variables
openembedded-core Core metadata

Search

Git revision

HEAD

HEAD

HEAD

New project & Manu

Type the recipe you want to build m

Edit columns ~ Show rows: | 25

]

Dependencies Add | Remove

T Remove layer

T Remove layer

Show rows: 25

If you want to build any other layers, you will need to manually import them into your Toaster project, using the "Import layer"

page.

FROJECT

yOCtO * Toaster @ = Allbuilds & All projects
My project .
Configuration ~ Builds (0) New custom image

Layer repository information

New project & Manu

Type the recipe you want to build m

The layer you are importing must be compatible with Local Yocto Project, which is the release you are using in this project.

Layer name

Git repository URL

Repository subdirectory (optional)

Git revision

Layer dependencies (optional)

openembedded-core @

Type a layer name Add layer

You can only add layers Toaster knows about

Import and add to project To import a layer you need to enter a layer name, a Git repository URL and a revision (branch, tag or commit)

https://www.yoctoproject.org/docs/2.5.3/toaster-manual/toaster-manual.html

11/21

3/4/2020

Toaster User Manual

3.10.3. Building a Specific Recipe Given Multiple Versionsf|

Occasionally, a layer might provide more than one version of the same recipe. For example, the openembedded-core
layer provides two versions of the ba sh recipe (i.e. 3.2.48 and 4.3.30-r0) and two versions of the which recipe (i.e. 2.21

and 2.18). The following figure shows this exact scenario:

YOCtO - Toaster @ = Aubuids & Allprojects

FROJECT

Demo project: Configuration Compatible layers openembedded-core (master)

openembedded-core (masten)

Layer details [ECCCEACTMM Machines (7)

New build = New project

About

o bedded-core

bash % Search
Recipe v Description

bash An sh-compatible command language interpreter

bash An sh-compatible command language interpreter.

which ‘Which is a utility that prints out the full path of the

executables that bash(1) would execute when the passed
program names would have been entered on the shell
prompt. It does this by using the exact same algorithm as
bash.

which ‘Which is a utility that prints out the full path of the
executables that bash(1) would execute when the passed
program names would have been entered on the shell
prompt. It does this by using the exact same algorithm as
bash.

Version

3.2.48

4.3.30-r0

2.21

2.18

Show rows: | 25

Build recipe

Build recipe

Build recipe

Build recipe

Build recipe

Show rows: | 25

j Summary
Core metadata

Description
OpenEmbedded-Core is a layer containing the core
metadata for current versions of OpenEmbedded. It is
distro-less (can build a functional image with DISTRO
="") and contains only emulated machine support.

By default, the OpenEmbedded build system builds one of the two recipes. For the bash case, version 4.3.30-r0 is built by
default. Unfortunately, Toaster as it exists, is not able to override the default recipe version. If you would like to build bash
3.2.48, you need to set the PREFERRED VERSTON variable. You can do so from Toaster, using the "Add variable" form,
which is available in the "BitBake variables" page of the project configuration section as shown in the following screen:

https://www.yoctoproject.org/docs/2.5.3/toaster-manual/toaster-manual.html

& Mant

12/21

http://www.yoctoproject.org/docs/2.5.3/ref-manual/ref-manual.html#var-PREFERRED_VERSION

3/4/2020 Toaster User Manual

ygggg * Toaster @ S Albuids B All projects

New project & Manu

Demo project .

Builds (1) [elylsTeilhly Import layer Type the recipe you want to build m

Configuration Bitbake variables
COMPATIBLE METADATA DISTRO

Image recipes poky #

Software recipes

Machines IMAGE_FSTYPES

Layers ext3 [ffs? tar.bz2 #

EXTRA CONFIGURATION

" IMAGE_INSTALL _append
BitBake variables

Not set #

PACKAGE CLASSES
package_rpm ¢

SDKMACHINE
x86_64 #

Add variable

Variable Some variables are reserved from Toaster
Type variable name
A Toaster cannot set any variables that impact 1) the configuration
of the build servers, or 2) where artifacts produced by the build
Value are stored. Such variables include:
Type variable value BE_DISKMON_DIRS BB_NUMBER_THREADS CVS_PROXY_HOST
CVS_PROXY_PORT DL_DIR PARALLEL_MAKE SSTATE_DIR

Add variable SSTATE_MIRRORS TMPDIR
Plus the following standard shell environment variables:

http_proxy ftp_proxy https_proxy all_proxy

To specify bash 3.2.48 as the version to build, enter "PREFERRED_VERSION_bash" in the "Variable" field, and "3.2.48" in the
"Value" field. Next, click the "Add variable" button:

https://www.yoctoproject.org/docs/2.5.3/toaster-manual/toaster-manual.html 13/21

yocto - Toasier @

FROJECT

= All builds

& All projects

Demo project .

Builds (1) ESLQIGTELEN Import layer

Configuration

COMPATIBLE METADATA
Image recipes
Software recipes
Machines

Layers

EXTRA CONFIGURATION

BitBake variables

Bitbake variables

DISTRO
poky #

IMAGE_FSTYPES
ext3 jffis? tar.bz?2 ¢

IMAGE_INSTALL _append
Not set #

PACKAGE CLASSES
package_rpm ¢

SDKMACHINE
x86_64 #

Add variable

Variable

PREFERRED_VERSION_bash

Value

3.2.48

Add variable

Toaster User Manual

New project

& Mant

Type the recipe you want to build m

Some variables are reserved from Toaster

Toaster cannot set any variables that impact 1) the configuration
of the build servers, or 2) where artifacts produced by the build
are stored. Such variables include:

BE_DISKMON_DIRS BB_NUMBER_THREADS CVS_PROXY_HOST
CVS_PROXY_PORT DL_DIR PARALLEL_MAKE SSTATE_DIR
SSTATE_MIRRORS TMPDIR

Plus the following standard shell environment variables:

http_proxy ftp_proxy https_proxy all_proxy

After clicking the "Add variable" button, the settings for PREFERRED VERSTON are added to the bottom of the BitBake
variables list. With these settings, the OpenEmbedded build system builds the desired version of the recipe rather than the

default version:

https://www.yoctoproject.org/docs/2.5.3/toaster-manual/toaster-manual.html

14/21

3/4/2020 Toaster User Manual

YOCto " Toaster & £ All builds & All projects New project & Manu

FROJECT

Demo project .

Builds (1) Reagi-Neiluly Import layer Type the recipe you want to build m

Configuration Bitbake variables
COMPATIBLE METADATA DISTRO

Recipes poky #

Machines

Layers IMAGE_FSTYPES

EXTRA CONFIGURATION ext3 jﬁS2 tar.bz2 #

BitBake variables

IMAGE_INSTALL_append
Not set #

PACKAGE_CLASSES
package_rpm #

SDKMACHINE
XB6_64 #

PREFERRED_VERSION_bash (f
3248 #

Add variable

Variable Some variables are reserved from Toaster

Type variable name
ype var Toaster cannot set any variables that impact 1) the configuration

of the build servers, or 2) where artifacts produced by the build

Value are stored. Such variables include:

Type variable value BE_DISKMON_DIRS BE_NUMBER_THREADS CVS_PROXY_HOST
CVS_PROXY_PORT DL_DIR PARALLEL_MAKE SSTATE_DIR
Add variable SSTATE_MIRRORS TMPDIR

Plus the following standard shell environment variables:

http_proxy ftp_proxy https_proxy all_proxy

Chapter 4. Concepts and Referencef

Table of Contents

4.1. Layer Source
4.1.1. Setting Up and Using_a Layer Source

4.2. Releases
4.2.1. Pre-Configured Releases

4.3. Configuring_Toaster
4.3.1. Configuring_the Workflow
4.3.2. Customizing_Pre-Set Data
4.3.3. Understanding_Fixture File Format

4.4. Remote Toaster Monitoring
4.4.1. Checking_Health
4.4.2. Determining_Status of Builds in Progress
4.4.3. Checking_Status of Builds Completed
4.4.4. Determining_Status of a Specific Build

4.5. Useful Commands
4.51.buildslist

4.52.builddelete
453. perf

4.54. checksettings
4.5.5. runbuilds

In order to configure and use Toaster, you should understand some concepts and have some basic command reference material
available. This final chapter provides conceptual information on layer sources, releases, and JSON configuration files. Also
provided is a quick look at some useful manage . Py commands that are Toaster-specific. Information on manage .py
commands does exist across the Web and the information in this manual by no means attempts to provide a command
comprehensive reference.

https://www.yoctoproject.org/docs/2.5.3/toaster-manual/toaster-manual.html 15/21

3/4/2020 Toaster User Manual

4.1. Layer Sourcef

In general, a "layer source" is a source of information about existing layers. In particular, we are concerned with layers that you
can use with the Yocto Project and Toaster. This chapter describes a particular type of layer source called a "layer index."

A layer index is a web application that contains information about a set of custom layers. A good example of an existing layer
index is the OpenEmbedded Layer Index. A public instance of this layer index exists at http://layers.openembedded.org. You can
find the code for this layer index's web application at http://git.yoctoproject.org/cgit/cgit.cgi/layerindex-web/.

When you tie a layer source into Toaster, it can query the layer source through a REST API, store the information about the
layers in the Toaster database, and then show the information to users. Users are then able to view that information and build
layers from Toaster itself without worrying about cloning or editing the BitBake layers configuration file bblayers.conf.

Tying a layer source into Toaster is convenient when you have many custom layers that need to be built on a regular basis by a
community of developers. In fact, Toaster comes pre-configured with the OpenEmbedded Metadata Index.

Note

You do not have to use a layer source to use Toaster. Tying into a layer source is optional.

4.1.1. Setting Up and Using a Layer Sourcef

To use your own layer source, you need to set up the layer source and then tie it into Toaster. This section describes how to tie
into a layer index in a manner similar to the way Toaster ties into the OpenEmbedded Metadata Index.

4.1.1.1. Understanding Your Layersq

The obvious first step for using a layer index is to have several custom layers that developers build and access using the Yocto
Project on a regular basis. This set of layers needs to exist and you need to be familiar with where they reside. You will need
that information when you set up the code for the web application that "hooks" into your set of layers.

For general information on layers, see the "The Yocto Project Layer Model" section in the Yocto Project Overview and Concepts
Manual. For information on how to create layers, see the "Understanding_and Creating_Layers" section in the Yocto Project
Development Tasks Manual.

4.1.1.2. Configuring Toaster to Hook Into Your Layer Index{

If you want Toaster to use your layer index, you must host the web application in a server to which Toaster can connect. You
also need to give Toaster the information about your layer index. In other words, you have to configure Toaster to use your layer
index. This section describes two methods by which you can configure and use your layer index.

In the previous section, the code for the OpenEmbedded Metadata Index (i.e. http://layers.openembedded.org) was referenced.
You can use this code, which is at http://git.yoctoproject.org/cgit/cgit.cgi/layerindex-web/, as a base to create your own layer
index.

4.1.1.2.1. Use the Administration Interfacef
Access the administration interface through a browser by entering the URL of your Toaster instance and adding "/admin" to
the end of the URL. As an example, if you are running Toaster locally, use the following URL:

http://127.0.0.1:8000/admin

The administration interface has a "Layer sources" section that includes an "Add layer source" button. Click that button and
provide the required information. Make sure you select "layerindex" as the layer source type.

4.1.1.2.2. Use the Fixture Feature{

The Django fixture feature overrides the default layer server when you use it to specify a custom URL. To use the fixture feature,
create (or edit) the file bitbake/lib/toaster.orm/fixtures/custom. xml, and then set the following
Toaster setting to your custom URL:

<?xml version="1.0" ?>
<django-objects version="1.0">
<object model="orm.toastersetting" pk="100">
<field name="name" type="CharField">CUSTOM_LAYERINDEX_SERVER</field>
<field name="value" type="CharField">https://layers.my_organization.org/layerindex/branch/master/]
</object>
<django-objects>

| >

When you start Toaster for the first time, or if you delete the file toaster.sqglite and restart, the database will
populate cleanly from this layer index server.

Once the information has been updated, verify the new layer information is available by using the Toaster web interface. To do
that, visit the "All compatible layers" page inside a Toaster project. The layers from your layer source should be listed there.

If you change the information in your layer index server, refresh the Toaster database by running the following command:

$ bitbake/lib/toaster/manage.py lsupdates

https://www.yoctoproject.org/docs/2.5.3/toaster-manual/toaster-manual.html 16/21

http://layers.openembedded.org/
http://git.yoctoproject.org/cgit/cgit.cgi/layerindex-web/
http://en.wikipedia.org/wiki/Representational_state_transfer
http://www.yoctoproject.org/docs/2.5.3/overview-manual/overview-manual.html#the-yocto-project-layer-model
http://www.yoctoproject.org/docs/2.5.3/dev-manual/dev-manual.html#understanding-and-creating-layers
http://layers.openembedded.org/
http://git.yoctoproject.org/cgit/cgit.cgi/layerindex-web/

3/4/2020

Toaster User Manual

If Toaster can reach the API URL, you should see a message telling you that Toaster is updating the layer source information.

4.2. Releasesq|

When you create a Toaster project using the web interface, you are asked to choose a "Release." In the context of Toaster, the
term "Release" refers to a set of layers and a BitBake version the OpenEmbedded build system uses to build something. As
shipped, Toaster is pre-configured with releases that correspond to Yocto Project release branches. However, you can modify,
delete, and create new releases according to your needs. This section provides some background information on releases.

4.2.1. Pre-Configured Releases

As shipped, Toaster is configured to use a specific set of releases. Of course, you can always configure Toaster to use any
release. For example, you might want your project to build against a specific commit of any of the "out-of-the-box" releases. Or,
you might want your project to build against different revisions of OpenEmbedded and BitBake.

As shipped, Toaster is configured to work with the following releases:

e Yocto Project 2.5.3 "Sumo" or OpenEmbedded "Sumo": This release causes your Toaster projects to build against the
head of the sumo branch at http://git.yoctoproject.org/cgit/cgit.cgi/poky/log/?h=rocko or
http://git.openembedded.org/openembedded-core/commit/?h=rocko.

e Yocto Project "Master" or OpenEmbedded "Master": This release causes your Toaster Projects to build against the head
of the master branch, which is where active development takes place, at http://git.yoctoproject.org/cgit/cgit.cgi/poky/log/ or

http://git.openembedded.org/openembedded-core/log/.

e Local Yocto Project or Local OpenEmbedded: This release causes your Toaster Projects to build against the head of the
poky or openembedded-core clone you have local to the machine running Toaster.

4.3. Configuring Toasterq

In order to use Toaster, you must configure the database with the default content. The following subsections describe various
aspects of Toaster configuration.

4.3.1. Configuring the Workflow(

The bldcontrol/management/commands/checksettings.py file controls workflow configuration. The
following steps outline the process to initially populate this database.

1. The default project settings are set from orm/fixtures/settings.xml.

2. The default project distro and layers are added from orm/fixtures /po ky . xml if poky is installed. If poky is
not installed, they are added from orm/fixtures/oe—-core.xml.

3. Ifthe orm/fixtures/custom. xml file exists, then its values are added.
4. The layer index is then scanned and added to the database.

Once these steps complete, Toaster is set up and ready to use.

4.3.2. Customizing Pre-Set Dataf

The pre-set data for Toaster is easily customizable. You can create the orm/fixtures/custom. xml file to customize
the values that go into to the database. Customization is additive, and can either extend or completely replace the existing
values.

You use the orm/fixtures/custom.xml file to change the default project settings for the machine, distro, file
images, and layers. When creating a new project, you can use the file to define the offered alternate project release selections.
For example, you can add one or more additional selections that present custom layer sets or distros, and any other local or
proprietary content.

Additionally, you can completely disable the content from the oe—core.xml and poky . xm1 files by defining the section
shown below in the settings . xm1 file. For example, this option is particularly useful if your custom configuration defines
fewer releases or layers than the default fixture files.

The following example sets "name" to "CUSTOM_XML_ONLY" and its value to "True".
<object model="orm.toastersetting" pk="99">
<field type="CharField" name="name">CUSTOM_XML_ONLY</field>

<field type="CharField" name="value">True</field>
</object>

4.3.3. Understanding Fixture File Format(

The following is an overview of the file format used by the oe—core.xml, poky.xml, and custom. xml files.

The following subsections describe each of the sections in the fixture files, and outline an example section of the XML code. you
can use to help understand this information and create a local custom. xml file.

4.3.3.1. Defining the Default Distro and Other Valuesf|

https://www.yoctoproject.org/docs/2.5.3/toaster-manual/toaster-manual.html 17/21

http://git.yoctoproject.org/cgit/cgit.cgi/poky/log/?h=rocko
http://git.openembedded.org/openembedded-core/commit/?h=rocko
http://git.yoctoproject.org/cgit/cgit.cgi/poky/log/
http://git.openembedded.org/openembedded-core/log/

3/4/2020

Toaster User Manual

This section defines the default distro value for new projects. By default, it reserves the first Toaster Setting record "1". The
following demonstrates how to set the project default value for DISTRO:

<!-- Set the project default value for DISTRO -->
<object model="orm.toastersetting" pk="1">
<field type="CharField" name="name">DEFCONF_DISTRO</field>
<field type="CharField" name="value">poky</field>
</object>

You can override other default project values by adding additional Toaster Setting sections such as any of the settings coming
from the settings . xml1 file. Also, you can add custom values that are included in the BitBake environment. The "pk"
values must be unique. By convention, values that set default project values have a "DEFCONF" prefix.

4.3.3.2. Defining BitBake Version{

The following defines which version of BitBake is used for the following release selection:

<!-- Bitbake versions which correspond to the metadata release -->
<object model="orm.bitbakeversion" pk="1">
<field type="CharField" name="name">rocko</field>
<field type="CharField" name="giturl">git://git.yoctoproject.org/poky</field>
<field type="CharField" name="branch">rocko</field>
<field type="CharField" name="dirpath">bitbake</field>
</object>

4.3.3.3. Defining Releasef|

The following defines the releases when you create a new project.

<!-- Releases available -->
<object model="orm.release" pk="1">

<field type="CharField" name="name">rocko</field>

<field type="CharField" name="description">Yocto Project 2.4 "Rocko"</field>

<field rel="ManyToOneRel" to="orm.bitbakeversion" name="bitbake_version">1</field>

<field type="CharField" name="branch_name">rocko</field>

<field type="TextField" name="helptext">Toaster will run your builds using the tip of the <a href="http://git.yc
</object>

The "pk" value must match the above respective BitBake version record.

4.3.3.4. Defining the Release Default Layer Names{|

The following defines the default layers for each release:

<!-- Default project layers for each release -->
<object model="orm.releasedefaultlayer"” pk="1">
<field rel="ManyToOneRel" to="orm.release" name="release">1</field>
<field type="CharField" name="layer_name">openembedded-core</field>
</object>

The 'pk' values in the example above should start at "1" and increment uniquely. You can use the same layer name in multiple
releases.

4.3.3.5. Defining Layer Definitions{|

Layer definitions are the most complex. The following defines each of the layers, and then defines the exact layer version of the
layer used for each respective release. You must have one Orm. layer entry for each layer. Then, with each entry you need
asetof orm.layer version entries that connects the layer with each release that includes the layer. In general all
releases include the Iaye?

<object model="orm.layer" pk="1">
<field type="CharField" name="name">openembedded-core</field>
<field type="CharField" name="layer_index_url"></field>
<field type="CharField" name="vcs_url">git://git.yoctoproject.org/poky</field>
<field type="CharField" name="vcs_web_url">http://git.yoctoproject.org/cgit/cgit.cgi/poky</field>
<field type="CharField" name="vcs_web_tree_base_url">http://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/%path%:
<field type="CharField" name="vcs_web_file_base_url">http://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/%path%:
</object>
<object model="orm.layer_version" pk="1">
<field rel="ManyToOneRel" to="orm.layer" name="layer">1</field>
<field type="IntegerField" name="layer_source">0</field>
<field rel="ManyToOneRel" to="orm.release" name="release">1</field>
<field type="CharField" name="branch">rocko</field>
<field type="CharField" name="dirpath">meta</field>
</object>
<object model="orm.layer_version" pk="2">
<field rel="ManyToOneRel" to="orm.layer" name="layer">1</field>
<field type="IntegerField" name="layer_source">0</field>
<field rel="ManyToOneRel" to="orm.release" name="release">2</field>
<field type="CharField" name="branch">HEAD</field>
<field type="CharField" name="commit">HEAD</field>
<field type="CharField" name="dirpath">meta</field>
</object>
<object model="orm.layer_version" pk="3">
<field rel="ManyToOneRel" to="orm.layer" name="layer">1</field>
<field type="IntegerField" name="layer_source">0</field>
<field rel="ManyToOneRel" to="orm.release" name="release">3</field>

https://www.yoctoproject.org/docs/2.5.3/toaster-manual/toaster-manual.html

18/21

http://www.yoctoproject.org/docs/2.5.3/ref-manual/ref-manual.html#var-DISTRO

3/4/2020 Toaster User Manual

<field type="CharField" name="branch">master</field>
<field type="CharField" name="dirpath">meta</field>
</object>

The layer "pk" values above must be unique, and typically start at "1". The layer version "pk" values must also be unique across
all layers, and typically start at "1".

4.4. Remote Toaster Monitoringf|

Toaster has an API that allows remote management applications to directly query the state of the Toaster server and its builds in
a machine-to-machine manner. This API uses the REST interface and the transfer of JSON files. For example, you might monitor
a build inside a container through well supported known HTTP ports in order to easily access a Toaster server inside the

container. In this example, when you use this direct JSON API, you avoid having web page parsing against the display the user
sees.

4.4.1. Checking Health(|

Before you use remote Toaster monitoring, you should do a health check. To do this, ping the Toaster server using the following
call to see if it is still alive:

http://host:port/health

Be sure to provide values for host and port. If the server is alive, you will get the response HTML:

<IDOCTYPE html>

<html lang="en">
<head><title>Toaster Health</title></head>
<body>0k</body>

</html>

4.4.2. Determining Status of Builds in Progress(

Sometimes it is useful to determine the status of a build in progress. To get the status of pending builds, use the following call:

http://host:port/toastergui/api/building

Be sure to provide values for host and port. The output is a JSON file that itemizes all builds in progress. This file includes the

time in seconds since each respective build started as well as the progress of the cloning, parsing, and task execution. The
following is sample output for a build in progress:

{"count": 1,
"pbuilding": [

{"machine": "beaglebone",
"seconds": "463.869",
"task": "927:2384",
"distro": "poky",
"clone": "1:1",

"id": 2,

"start": "2017-09-22T09:31:44.887Z",
"name": "20170922093200",

"parse": "818:818",

"project": "my_rocko",
"target": "core-image-minimal"
1]

The JSON data for this query is returned in a single line. In the previous example the line has been artificially split for
readability.

4.4.3. Checking Status of Builds Completed(
Once a build is completed, you get the status when you use the following call:

http://host:port/toastergui/api/builds

Be sure to provide values for host and port. The output is a JSON file that itemizes all complete builds, and includes build
summary information. The following is sample output for a completed build:

{"count": 1,
"builds": [
{"distro": "poky",
"errors": 0,

"machine":

"beaglebone",

"project”: "my_rocko",

"stop": "2017-09-22T09:26:36.017Z",
“"target": "quilt-native",
"seconds": "78.193",

"outcome": "Succeeded",

"id": 1,

https://www.yoctoproject.org/docs/2.5.3/toaster-manual/toaster-manual.html 19/21

http://en.wikipedia.org/wiki/Representational_state_transfer

3/4/2020

Toaster User Manual
"start": "2017-09-22T09:25:17.824Z",
"warnings": 1,
"name": "20170922092618"
11

The JSON data for this query is returned in a single line. In the previous example the line has been artificially split for
readability.

4.4.4. Determining Status of a Specific Buildf

Sometimes it is useful to determine the status of a specific build. To get the status of a specific build, use the following call:

http://host:port/toastergui/api/build/ID

Be sure to provide values for host, port, and ID. You can find the value for ID from the Builds Completed query. See the
"Checking_Status of Builds Completed" section for more information.

The output is a JSON file that itemizes the specific build and includes build summary information. The following is sample output
for a specific build:
{"build":
{"distro": "poky",
"errors": 0,

"machine": "beaglebone",

"project": "my_rocko",

"stop": "2017-09-22709:26:36.017Z",
"target": "quilt-native",
"seconds": "78.193",

"outcome": "Succeeded",

"id": 1,

"start": "2017-09-22T09:25:17.8247",

"warnings": 1,

"name": "20170922092618",

"cooker_log": "/opt/user/poky/build-toaster-2/tmp/log/cooker/beaglebone/build_20170922_022607.991.1log"
3

The JSON data for this query is returned in a single line. In the previous example the line has been artificially split for
readability.

4.5. Useful Commandsf|

In addition to the web user interface and the scripts that start and stop Toaster, command-line commands exist through the
manage . py management script. You can find general documentation on manage . py at the Django site. However,
several manage . Py commands have been created that are specific to Toaster and are used to control configuration and
back-end tasks. You can locate these commands in the Source Directory (e.g. poky) atbitbake/lib/manage.py.
This section documents those commands.

Notes

e When using manage . py commands given a default configuration, you must be sure that your
working directory is set to the Build Directory. Using manage . py commands from the Build
Directory allows Toaster to find the toaster.sqglite file, which is located in the Build
Directory.

e For non-default database configurations, it is possible that you can use manage .py
commands from a directory other than the Build Directory. To do so, the
toastermain/settings.py file must be configured to point to the correct database
backend.

4.5.1. buildslist]
The buildslist command lists all builds that Toaster has recorded. Access the command as follows:

$ bitbake/lib/toaster/manage.py buildslist

The command returns a list, which includes numeric identifications, of the builds that Toaster has recorded in the current
database.

You need to run the buildslist command first to identify existing builds in the database before using the
builddelete command. Here is an example that assumes default repository and build directory names:

$ cd ~/poky/build
$ python ../bitbake/lib/toaster/manage.py buildslist

If your Toaster database had only one build, the above builds1ist command would return something like the following:

https://www.yoctoproject.org/docs/2.5.3/toaster-manual/toaster-manual.html

20/21

https://docs.djangoproject.com/en/1.7/topics/settings/
http://www.yoctoproject.org/docs/2.5.3/ref-manual/ref-manual.html#source-directory
http://www.yoctoproject.org/docs/2.5.3/ref-manual/ref-manual.html#build-directory

3/4/2020 Toaster User Manual

1: gemux86 poky core-image-minimal

4.5.2. builddeletef
The builddelete command deletes data associated with a build. Access the command as follows:

$ bitbake/lib/toaster/manage.py builddelete build id

The command deletes all the build data for the specified build_id. This command is useful for removing old and unused data
from the database.

Prior to running the builddelete command, you need to get the ID associated with builds by using the buildslist
command.

4.5.3. perf(
The perf command measures Toaster performance. Access the command as follows:

$ bitbake/lib/toaster/manage.py perf

The command is a sanity check that returns page loading times in order to identify performance problems.

4.5.4. checksettings]
The checksettings command verifies existing Toaster settings. Access the command as follows:

$ bitbake/lib/toaster/manage.py checksettings

Toaster uses settings that are based on the database to configure the building tasks. The Checksettings command
verifies that the database settings are valid in the sense that they have the minimal information needed to start a build.

In order for the Checksettings command to work, the database must be correctly set up and not have existing data. To
be sure the database is ready, you can run the following:

$ bitbake/lib/toaster/manage.py syncdb

$ bitbake/lib/toaster/manage.py migrate orm
$ bitbake/lib/toaster/manage.py migrate bldcontrol

After running these commands, you can run the checksettings command.

4.5.5. runbuildsf
The runbuilds command launches scheduled builds. Access the command as follows:

$ bitbake/lib/toaster/manage.py runbuilds

The runbuilds command checks if scheduled builds exist in the database and then launches them per schedule. The
command returns after the builds start but before they complete. The Toaster Logging Interface records and updates the
database when the builds complete.

https://www.yoctoproject.org/docs/2.5.3/toaster-manual/toaster-manual.html 21/21

